代数 例

Решить систему Equations y=x^2+3 , y=-2x^2+3
,
ステップ 1
各方程式の等辺を消去し、組み合わせます。
ステップ 2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 2.1
を含むすべての項を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 2.1.1
方程式の両辺にを足します。
ステップ 2.1.2
をたし算します。
ステップ 2.2
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 2.2.1
方程式の両辺からを引きます。
ステップ 2.2.2
からを引きます。
ステップ 2.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
の各項をで割ります。
ステップ 2.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1.1
共通因数を約分します。
ステップ 2.3.2.1.2
で割ります。
ステップ 2.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
で割ります。
ステップ 2.4
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.5
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.1
に書き換えます。
ステップ 2.5.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.5.3
プラスマイナスです。
ステップ 3
のとき、の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
に代入します。
ステップ 3.2
に代入してを解きます。
タップして手順をさらに表示してください…
ステップ 3.2.1
括弧を削除します。
ステップ 3.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
を正数乗し、を得ます。
ステップ 3.2.2.1.2
をかけます。
ステップ 3.2.2.2
をたし算します。
ステップ 4
式の解は、有効な解である順序対の完全集合です。
ステップ 5
結果は複数の形で表すことができます。
点の形:
方程式の形:
ステップ 6