代数 例

x切片とy切片を求める f(x)=(6x+1)(x^2+1)(x+1)^2
ステップ 1
x切片を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
x切片を求めるために、に代入しを解きます。
ステップ 1.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式をとして書き換えます。
ステップ 1.2.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 1.2.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
に等しいとします。
ステップ 1.2.3.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.1
方程式の両辺からを引きます。
ステップ 1.2.3.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.2.1
の各項をで割ります。
ステップ 1.2.3.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.2.2.1.1
共通因数を約分します。
ステップ 1.2.3.2.2.2.1.2
で割ります。
ステップ 1.2.3.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.2.3.1
分数の前に負数を移動させます。
ステップ 1.2.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
に等しいとします。
ステップ 1.2.4.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.1
方程式の両辺からを引きます。
ステップ 1.2.4.2.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 1.2.4.2.3
に書き換えます。
ステップ 1.2.4.2.4
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 1.2.4.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 1.2.4.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 1.2.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.5.1
に等しいとします。
ステップ 1.2.5.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 1.2.5.2.1
に等しいとします。
ステップ 1.2.5.2.2
方程式の両辺からを引きます。
ステップ 1.2.6
最終解はを真にするすべての値です。
ステップ 1.3
点形式のx切片です。
x切片:
x切片:
ステップ 2
y切片を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
y切片を求めるために、に代入しを解きます。
ステップ 2.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.1
括弧を削除します。
ステップ 2.2.2
括弧を削除します。
ステップ 2.2.3
括弧を削除します。
ステップ 2.2.4
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.4.1
をかけます。
ステップ 2.2.4.2
をたし算します。
ステップ 2.2.4.3
をかけます。
ステップ 2.2.4.4
を正数乗し、を得ます。
ステップ 2.2.4.5
をたし算します。
ステップ 2.2.4.6
をかけます。
ステップ 2.2.4.7
をたし算します。
ステップ 2.2.4.8
1のすべての数の累乗は1です。
ステップ 2.3
点形式のy切片です。
y切片:
y切片:
ステップ 3
交点を一覧にします。
x切片:
y切片:
ステップ 4