代数 例

x切片とy切片を求める y=sin(x)+1
ステップ 1
x切片を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
x切片を求めるために、に代入しを解きます。
ステップ 1.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式をとして書き換えます。
ステップ 1.2.2
方程式の両辺からを引きます。
ステップ 1.2.3
方程式の両辺の逆正弦をとり、正弦の中からを取り出します。
ステップ 1.2.4
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
の厳密値はです。
ステップ 1.2.5
正弦関数は、第三象限と第四象限で負となります。2番目の解を求めるには、から解を引き、参照角を求めます。次に、この参照角をに足し、第三象限で解を求めます。
ステップ 1.2.6
式を簡約し、2番目の解を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.6.1
からを引きます。
ステップ 1.2.6.2
の結果の角度は正で、より小さく、と隣接します。
ステップ 1.2.7
の周期を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.7.1
関数の期間はを利用して求めることができます。
ステップ 1.2.7.2
周期の公式ので置き換えます。
ステップ 1.2.7.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 1.2.7.4
で割ります。
ステップ 1.2.8
を各負の角に足し、正の角を得ます。
タップして手順をさらに表示してください…
ステップ 1.2.8.1
に足し、正の角を求めます。
ステップ 1.2.8.2
を公分母のある分数として書くために、を掛けます。
ステップ 1.2.8.3
分数をまとめます。
タップして手順をさらに表示してください…
ステップ 1.2.8.3.1
をまとめます。
ステップ 1.2.8.3.2
公分母の分子をまとめます。
ステップ 1.2.8.4
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.8.4.1
をかけます。
ステップ 1.2.8.4.2
からを引きます。
ステップ 1.2.8.5
新しい角をリストします。
ステップ 1.2.9
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 1.2.10
答えをまとめます。
、任意の整数
、任意の整数
ステップ 1.3
点形式のx切片です。
x切片:、任意の整数について
x切片:、任意の整数について
ステップ 2
y切片を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
y切片を求めるために、に代入しを解きます。
ステップ 2.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.1
括弧を削除します。
ステップ 2.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
の厳密値はです。
ステップ 2.2.2.2
をたし算します。
ステップ 2.3
点形式のy切片です。
y切片:
y切片:
ステップ 3
交点を一覧にします。
x切片:、任意の整数について
y切片:
ステップ 4