代数 例

簡略化 (6y^2+18y-60)/(3y^2-12y)*(y^2-16)/(y^2+2y-8)
ステップ 1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.1.1
で因数分解します。
ステップ 1.1.2
で因数分解します。
ステップ 1.1.3
で因数分解します。
ステップ 1.1.4
で因数分解します。
ステップ 1.1.5
で因数分解します。
ステップ 1.2
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 1.2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.2.2
この整数を利用して因数分解の形を書きます。
ステップ 2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1
で因数分解します。
ステップ 2.2
で因数分解します。
ステップ 2.3
で因数分解します。
ステップ 3
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
に書き換えます。
ステップ 3.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 4
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 4.2
この整数を利用して因数分解の形を書きます。
ステップ 5
項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.1.1
で因数分解します。
ステップ 5.1.2
共通因数を約分します。
ステップ 5.1.3
式を書き換えます。
ステップ 5.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.1
で因数分解します。
ステップ 5.2.2
で因数分解します。
ステップ 5.2.3
共通因数を約分します。
ステップ 5.2.4
式を書き換えます。
ステップ 5.3
をかけます。
ステップ 5.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.4.1
で因数分解します。
ステップ 5.4.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.4.2.1
で因数分解します。
ステップ 5.4.2.2
共通因数を約分します。
ステップ 5.4.2.3
式を書き換えます。
ステップ 5.5
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.5.1
共通因数を約分します。
ステップ 5.5.2
式を書き換えます。