問題を入力...
代数 例
ステップ 1
方程式の両辺からを引きます。
ステップ 2
ステップ 2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.2
この整数を利用して因数分解の形を書きます。
ステップ 3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 4
ステップ 4.1
がに等しいとします。
ステップ 4.2
についてを解きます。
ステップ 4.2.1
方程式の両辺にを足します。
ステップ 4.2.2
余弦の値域はです。がこの値域にないので、解はありません。
解がありません
解がありません
解がありません
ステップ 5
ステップ 5.1
がに等しいとします。
ステップ 5.2
についてを解きます。
ステップ 5.2.1
方程式の両辺からを引きます。
ステップ 5.2.2
方程式の両辺の逆余弦をとり、余弦の中からを取り出します。
ステップ 5.2.3
右辺を簡約します。
ステップ 5.2.3.1
の厳密値はです。
ステップ 5.2.4
余弦関数は、第二象限と第三象限で負となります。2番目の解を求めるには、から参照角を引き、第三象限で解を求めます。
ステップ 5.2.5
からを引きます。
ステップ 5.2.6
の周期を求めます。
ステップ 5.2.6.1
関数の期間はを利用して求めることができます。
ステップ 5.2.6.2
周期の公式のをで置き換えます。
ステップ 5.2.6.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 5.2.6.4
をで割ります。
ステップ 5.2.7
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
、任意の整数
、任意の整数
ステップ 6
最終解はを真にするすべての値です。
、任意の整数