代数 例

グラフ化する y=(x-1)(2x+7)^2
ステップ 1
で点を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
式の変数で置換えます。
ステップ 1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1
をかけます。
ステップ 1.2.1.2
をたし算します。
ステップ 1.2.1.3
乗します。
ステップ 1.2.1.4
をかけます。
ステップ 1.2.1.5
をかけます。
ステップ 1.2.1.6
をたし算します。
ステップ 1.2.1.7
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.1.7.1
をかけます。
タップして手順をさらに表示してください…
ステップ 1.2.1.7.1.1
乗します。
ステップ 1.2.1.7.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.2.1.7.2
をたし算します。
ステップ 1.2.1.8
乗します。
ステップ 1.2.2
からを引きます。
ステップ 1.2.3
最終的な答えはです。
ステップ 1.3
を10進数に変換します。
ステップ 2
で点を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
式の変数で置換えます。
ステップ 2.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
をかけます。
ステップ 2.2.1.2
をたし算します。
ステップ 2.2.1.3
1のすべての数の累乗は1です。
ステップ 2.2.1.4
をかけます。
ステップ 2.2.1.5
をかけます。
ステップ 2.2.1.6
をたし算します。
ステップ 2.2.1.7
1のすべての数の累乗は1です。
ステップ 2.2.1.8
をかけます。
ステップ 2.2.2
からを引きます。
ステップ 2.2.3
最終的な答えはです。
ステップ 2.3
を10進数に変換します。
ステップ 3
で点を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
式の変数で置換えます。
ステップ 3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
をかけます。
ステップ 3.2.1.2
をたし算します。
ステップ 3.2.1.3
乗します。
ステップ 3.2.1.4
をかけます。
ステップ 3.2.1.5
をかけます。
ステップ 3.2.1.6
をたし算します。
ステップ 3.2.1.7
乗します。
ステップ 3.2.1.8
をかけます。
ステップ 3.2.2
からを引きます。
ステップ 3.2.3
最終的な答えはです。
ステップ 3.3
を10進数に変換します。
ステップ 4
で点を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
式の変数で置換えます。
ステップ 4.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
をかけます。
ステップ 4.2.1.2
をたし算します。
ステップ 4.2.1.3
乗します。
ステップ 4.2.1.4
をかけます。
ステップ 4.2.1.5
をかけます。
ステップ 4.2.1.6
をたし算します。
ステップ 4.2.1.7
乗します。
ステップ 4.2.1.8
をかけます。
ステップ 4.2.2
からを引きます。
ステップ 4.2.3
最終的な答えはです。
ステップ 4.3
を10進数に変換します。
ステップ 5
で点を求めます。
タップして手順をさらに表示してください…
ステップ 5.1
式の変数で置換えます。
ステップ 5.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
をかけます。
ステップ 5.2.1.2
をたし算します。
ステップ 5.2.1.3
乗します。
ステップ 5.2.1.4
をかけます。
ステップ 5.2.1.5
をかけます。
ステップ 5.2.1.6
をたし算します。
ステップ 5.2.1.7
乗します。
ステップ 5.2.1.8
をかけます。
ステップ 5.2.2
からを引きます。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
を10進数に変換します。
ステップ 6
三次関数は関数の動作と点を利用してグラフ化することができます。
ステップ 7
三次関数は関数の動作と選択した点を利用してグラフ化することができます。
左に下がり、右に上がる
ステップ 8