代数 例

逆元を求める f(x) = cube root of 5^x+9
ステップ 1
を方程式で書きます。
ステップ 2
変数を入れ替えます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
方程式をとして書き換えます。
ステップ 3.2
方程式の両辺からを引きます。
ステップ 3.3
方程式の左辺から根を削除するため、方程式の両辺を3乗します。
ステップ 3.4
方程式の各辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.1
を利用し、に書き換えます。
ステップ 3.4.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.2.1
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 3.4.2.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.4.2.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.4.2.1.2.1
共通因数を約分します。
ステップ 3.4.2.1.2.2
式を書き換えます。
ステップ 3.4.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.3.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.3.1.1
二項定理を利用します。
ステップ 3.4.3.1.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.3.1.2.1
をかけます。
ステップ 3.4.3.1.2.2
乗します。
ステップ 3.4.3.1.2.3
をかけます。
ステップ 3.4.3.1.2.4
乗します。
ステップ 3.5
について解きます。
タップして手順をさらに表示してください…
ステップ 3.5.1
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 3.5.2
を対数の外に移動させて、を展開します。
ステップ 3.5.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.3.1
の各項をで割ります。
ステップ 3.5.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.5.3.2.1.1
共通因数を約分します。
ステップ 3.5.3.2.1.2
で割ります。
ステップ 4
で置き換え、最終回答を表示します。
ステップ 5
の逆か確認します。
タップして手順をさらに表示してください…
ステップ 5.1
逆を確認するために、か確認します。
ステップ 5.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.2.1
合成結果関数を立てます。
ステップ 5.2.2
の値を代入し、の値を求めます。
ステップ 5.2.3
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.3.1.1
分配則を当てはめます。
ステップ 5.2.3.1.2
をかけます。
ステップ 5.2.3.2
からを引きます。
ステップ 5.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.3.1
合成結果関数を立てます。
ステップ 5.3.2
の値を代入し、の値を求めます。
ステップ 5.3.3
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.3.1
底の変換公式を利用します。
ステップ 5.3.3.2
指数関数と対数関数は逆関数です。
ステップ 5.3.3.3
各項を2項式の定理の公式の項と一致させます。
ステップ 5.3.3.4
2項式の定理を利用してを因数分解します。
ステップ 5.3.3.5
実数と仮定して、累乗根の下から項を取り出します。
ステップ 5.3.4
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 5.3.4.1
をたし算します。
ステップ 5.3.4.2
をたし算します。
ステップ 5.4
なので、の逆です。