代数 例

簡略化 ((2x^(n+1))^2x^(3-n))/(x^(2(n+1))(x^n)^2)
ステップ 1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1
で因数分解します。
ステップ 1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
で因数分解します。
ステップ 1.2.2
共通因数を約分します。
ステップ 1.2.3
式を書き換えます。
ステップ 2
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
積の法則をに当てはめます。
ステップ 2.2
乗します。
ステップ 2.3
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 2.3.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.3.2
分配則を当てはめます。
ステップ 2.3.3
の左に移動させます。
ステップ 2.3.4
をかけます。
ステップ 2.4
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.4.1
分配則を当てはめます。
ステップ 2.4.2
をかけます。
ステップ 2.5
からを引きます。
ステップ 2.6
からを引きます。
ステップ 2.7
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 2.7.1
を移動させます。
ステップ 2.7.2
べき乗則を利用して指数を組み合わせます。
ステップ 2.7.3
をたし算します。
ステップ 2.7.4
をたし算します。
ステップ 3
今日数因数で約分することで式を約分します。
タップして手順をさらに表示してください…
ステップ 3.1
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 3.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.1.2
の左に移動させます。
ステップ 3.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1
で因数分解します。
ステップ 3.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
を掛けます。
ステップ 3.2.2.2
共通因数を約分します。
ステップ 3.2.2.3
式を書き換えます。
ステップ 3.2.2.4
で割ります。