問題を入力...
代数 例
ステップ 1
ステップ 1.1
各群から最大公約数を因数分解します。
ステップ 1.1.1
前の2項と後ろの2項をまとめます。
ステップ 1.1.2
各群から最大公約数を因数分解します。
ステップ 1.2
最大公約数を因数分解して、多項式を因数分解します。
ステップ 1.3
をに書き換えます。
ステップ 1.4
因数分解。
ステップ 1.4.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 1.4.2
不要な括弧を削除します。
ステップ 2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3
ステップ 3.1
がに等しいとします。
ステップ 3.2
についてを解きます。
ステップ 3.2.1
方程式の両辺にを足します。
ステップ 3.2.2
余弦の値域はです。がこの値域にないので、解はありません。
解がありません
解がありません
解がありません
ステップ 4
ステップ 4.1
がに等しいとします。
ステップ 4.2
についてを解きます。
ステップ 4.2.1
方程式の両辺からを引きます。
ステップ 4.2.2
方程式の両辺の逆余弦をとり、余弦の中からを取り出します。
ステップ 4.2.3
右辺を簡約します。
ステップ 4.2.3.1
の厳密値はです。
ステップ 4.2.4
余弦関数は、第二象限と第三象限で負となります。2番目の解を求めるには、から参照角を引き、第三象限で解を求めます。
ステップ 4.2.5
からを引きます。
ステップ 4.2.6
の周期を求めます。
ステップ 4.2.6.1
関数の期間はを利用して求めることができます。
ステップ 4.2.6.2
周期の公式のをで置き換えます。
ステップ 4.2.6.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 4.2.6.4
をで割ります。
ステップ 4.2.7
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
、任意の整数
、任意の整数
ステップ 5
ステップ 5.1
がに等しいとします。
ステップ 5.2
についてを解きます。
ステップ 5.2.1
方程式の両辺にを足します。
ステップ 5.2.2
方程式の両辺の逆余弦をとり、余弦の中からを取り出します。
ステップ 5.2.3
右辺を簡約します。
ステップ 5.2.3.1
の厳密値はです。
ステップ 5.2.4
余弦関数は、第一象限と第四象限で正となります。2番目の解を求めるには、から参照角を引き、第四象限で解を求めます。
ステップ 5.2.5
からを引きます。
ステップ 5.2.6
の周期を求めます。
ステップ 5.2.6.1
関数の期間はを利用して求めることができます。
ステップ 5.2.6.2
周期の公式のをで置き換えます。
ステップ 5.2.6.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 5.2.6.4
をで割ります。
ステップ 5.2.7
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
、任意の整数
、任意の整数
ステップ 6
最終解はを真にするすべての値です。
、任意の整数
ステップ 7
答えをまとめます。
、任意の整数