問題を入力...
代数 例
ステップ 1
ステップ 1.1
方程式の両辺からを引きます。
ステップ 1.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 1.3
をで因数分解します。
ステップ 1.3.1
をで因数分解します。
ステップ 1.3.2
をで因数分解します。
ステップ 1.3.3
をで因数分解します。
ステップ 1.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 1.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 1.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 1.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2
ステップ 2.1
各方程式ののすべての発生をで置き換えます。
ステップ 2.1.1
ののすべての発生をで置き換えます。
ステップ 2.1.2
左辺を簡約します。
ステップ 2.1.2.1
を簡約します。
ステップ 2.1.2.1.1
各項を簡約します。
ステップ 2.1.2.1.1.1
をに書き換えます。
ステップ 2.1.2.1.1.1.1
を利用し、をに書き換えます。
ステップ 2.1.2.1.1.1.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.1.2.1.1.1.3
とをまとめます。
ステップ 2.1.2.1.1.1.4
の共通因数を約分します。
ステップ 2.1.2.1.1.1.4.1
共通因数を約分します。
ステップ 2.1.2.1.1.1.4.2
式を書き換えます。
ステップ 2.1.2.1.1.1.5
簡約します。
ステップ 2.1.2.1.1.2
分配則を当てはめます。
ステップ 2.1.2.1.1.3
にをかけます。
ステップ 2.1.2.1.1.4
にをかけます。
ステップ 2.1.2.1.1.5
分配則を当てはめます。
ステップ 2.1.2.1.1.6
にをかけます。
ステップ 2.1.2.1.1.7
にをかけます。
ステップ 2.1.2.1.2
からを引きます。
ステップ 2.2
のについて解きます。
ステップ 2.2.1
を含まないすべての項を方程式の右辺に移動させます。
ステップ 2.2.1.1
方程式の両辺からを引きます。
ステップ 2.2.1.2
からを引きます。
ステップ 2.2.2
の各項をで割り、簡約します。
ステップ 2.2.2.1
の各項をで割ります。
ステップ 2.2.2.2
左辺を簡約します。
ステップ 2.2.2.2.1
の共通因数を約分します。
ステップ 2.2.2.2.1.1
共通因数を約分します。
ステップ 2.2.2.2.1.2
をで割ります。
ステップ 2.2.2.3
右辺を簡約します。
ステップ 2.2.2.3.1
をで割ります。
ステップ 2.2.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.2.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.3
各方程式ののすべての発生をで置き換えます。
ステップ 2.3.1
ののすべての発生をで置き換えます。
ステップ 2.3.2
右辺を簡約します。
ステップ 2.3.2.1
を簡約します。
ステップ 2.3.2.1.1
をに書き換えます。
ステップ 2.3.2.1.1.1
を利用し、をに書き換えます。
ステップ 2.3.2.1.1.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.3.2.1.1.3
とをまとめます。
ステップ 2.3.2.1.1.4
の共通因数を約分します。
ステップ 2.3.2.1.1.4.1
共通因数を約分します。
ステップ 2.3.2.1.1.4.2
式を書き換えます。
ステップ 2.3.2.1.1.5
指数を求めます。
ステップ 2.3.2.1.2
式を簡約します。
ステップ 2.3.2.1.2.1
にをかけます。
ステップ 2.3.2.1.2.2
からを引きます。
ステップ 2.3.2.1.2.3
にをかけます。
ステップ 2.3.2.1.2.4
をに書き換えます。
ステップ 2.3.2.1.3
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.4
各方程式ののすべての発生をで置き換えます。
ステップ 2.4.1
ののすべての発生をで置き換えます。
ステップ 2.4.2
右辺を簡約します。
ステップ 2.4.2.1
を簡約します。
ステップ 2.4.2.1.1
積の法則をに当てはめます。
ステップ 2.4.2.1.2
指数を足してにを掛けます。
ステップ 2.4.2.1.2.1
を移動させます。
ステップ 2.4.2.1.2.2
にをかけます。
ステップ 2.4.2.1.2.2.1
を乗します。
ステップ 2.4.2.1.2.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 2.4.2.1.2.3
とをたし算します。
ステップ 2.4.2.1.3
を乗します。
ステップ 2.4.2.1.4
をに書き換えます。
ステップ 2.4.2.1.4.1
を利用し、をに書き換えます。
ステップ 2.4.2.1.4.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.4.2.1.4.3
とをまとめます。
ステップ 2.4.2.1.4.4
の共通因数を約分します。
ステップ 2.4.2.1.4.4.1
共通因数を約分します。
ステップ 2.4.2.1.4.4.2
式を書き換えます。
ステップ 2.4.2.1.4.5
指数を求めます。
ステップ 2.4.2.1.5
式を簡約します。
ステップ 2.4.2.1.5.1
にをかけます。
ステップ 2.4.2.1.5.2
からを引きます。
ステップ 2.4.2.1.5.3
にをかけます。
ステップ 2.4.2.1.5.4
をに書き換えます。
ステップ 2.4.2.1.6
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3
ステップ 3.1
各方程式ののすべての発生をで置き換えます。
ステップ 3.1.1
ののすべての発生をで置き換えます。
ステップ 3.1.2
左辺を簡約します。
ステップ 3.1.2.1
を簡約します。
ステップ 3.1.2.1.1
各項を簡約します。
ステップ 3.1.2.1.1.1
積の法則をに当てはめます。
ステップ 3.1.2.1.1.2
を乗します。
ステップ 3.1.2.1.1.3
にをかけます。
ステップ 3.1.2.1.1.4
をに書き換えます。
ステップ 3.1.2.1.1.4.1
を利用し、をに書き換えます。
ステップ 3.1.2.1.1.4.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.1.2.1.1.4.3
とをまとめます。
ステップ 3.1.2.1.1.4.4
の共通因数を約分します。
ステップ 3.1.2.1.1.4.4.1
共通因数を約分します。
ステップ 3.1.2.1.1.4.4.2
式を書き換えます。
ステップ 3.1.2.1.1.4.5
簡約します。
ステップ 3.1.2.1.1.5
分配則を当てはめます。
ステップ 3.1.2.1.1.6
にをかけます。
ステップ 3.1.2.1.1.7
にをかけます。
ステップ 3.1.2.1.1.8
分配則を当てはめます。
ステップ 3.1.2.1.1.9
にをかけます。
ステップ 3.1.2.1.1.10
にをかけます。
ステップ 3.1.2.1.2
からを引きます。
ステップ 3.2
のについて解きます。
ステップ 3.2.1
を含まないすべての項を方程式の右辺に移動させます。
ステップ 3.2.1.1
方程式の両辺からを引きます。
ステップ 3.2.1.2
からを引きます。
ステップ 3.2.2
の各項をで割り、簡約します。
ステップ 3.2.2.1
の各項をで割ります。
ステップ 3.2.2.2
左辺を簡約します。
ステップ 3.2.2.2.1
の共通因数を約分します。
ステップ 3.2.2.2.1.1
共通因数を約分します。
ステップ 3.2.2.2.1.2
をで割ります。
ステップ 3.2.2.3
右辺を簡約します。
ステップ 3.2.2.3.1
をで割ります。
ステップ 3.2.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.2.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3.3
各方程式ののすべての発生をで置き換えます。
ステップ 3.3.1
ののすべての発生をで置き換えます。
ステップ 3.3.2
右辺を簡約します。
ステップ 3.3.2.1
を簡約します。
ステップ 3.3.2.1.1
をに書き換えます。
ステップ 3.3.2.1.1.1
を利用し、をに書き換えます。
ステップ 3.3.2.1.1.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.3.2.1.1.3
とをまとめます。
ステップ 3.3.2.1.1.4
の共通因数を約分します。
ステップ 3.3.2.1.1.4.1
共通因数を約分します。
ステップ 3.3.2.1.1.4.2
式を書き換えます。
ステップ 3.3.2.1.1.5
指数を求めます。
ステップ 3.3.2.1.2
式を簡約します。
ステップ 3.3.2.1.2.1
にをかけます。
ステップ 3.3.2.1.2.2
からを引きます。
ステップ 3.3.2.1.2.3
にをかけます。
ステップ 3.3.2.1.2.4
をに書き換えます。
ステップ 3.3.2.1.3
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.3.2.1.4
にをかけます。
ステップ 3.4
各方程式ののすべての発生をで置き換えます。
ステップ 3.4.1
ののすべての発生をで置き換えます。
ステップ 3.4.2
右辺を簡約します。
ステップ 3.4.2.1
を簡約します。
ステップ 3.4.2.1.1
積の法則をに当てはめます。
ステップ 3.4.2.1.2
指数を足してにを掛けます。
ステップ 3.4.2.1.2.1
を移動させます。
ステップ 3.4.2.1.2.2
にをかけます。
ステップ 3.4.2.1.2.2.1
を乗します。
ステップ 3.4.2.1.2.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 3.4.2.1.2.3
とをたし算します。
ステップ 3.4.2.1.3
を乗します。
ステップ 3.4.2.1.4
をに書き換えます。
ステップ 3.4.2.1.4.1
を利用し、をに書き換えます。
ステップ 3.4.2.1.4.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.4.2.1.4.3
とをまとめます。
ステップ 3.4.2.1.4.4
の共通因数を約分します。
ステップ 3.4.2.1.4.4.1
共通因数を約分します。
ステップ 3.4.2.1.4.4.2
式を書き換えます。
ステップ 3.4.2.1.4.5
指数を求めます。
ステップ 3.4.2.1.5
式を簡約します。
ステップ 3.4.2.1.5.1
にをかけます。
ステップ 3.4.2.1.5.2
からを引きます。
ステップ 3.4.2.1.5.3
にをかけます。
ステップ 3.4.2.1.5.4
をに書き換えます。
ステップ 3.4.2.1.6
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.4.2.1.7
にをかけます。
ステップ 4
すべての解をまとめます。