代数 例

平方根の性質を利用して解く 2(x^2-1)+1=1
ステップ 1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1
分配則を当てはめます。
ステップ 1.1.2
をかけます。
ステップ 1.2
をたし算します。
ステップ 2
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 2.1
方程式の両辺にを足します。
ステップ 2.2
をたし算します。
ステップ 3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
の各項をで割ります。
ステップ 3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
共通因数を約分します。
ステップ 3.2.1.2
で割ります。
ステップ 3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1
で割ります。
ステップ 4
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 5
のいずれの根はです。
ステップ 6
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 6.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 6.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 6.3
完全解は、解の正と負の部分の両方の計算結果です。