問題を入力...
代数 例
ステップ 1
各因数をに等しくして解くことで、式が負から正に切り替わるすべての値を求めます。
ステップ 2
方程式の両辺からを引きます。
ステップ 3
ステップ 3.1
の各項をで割ります。
ステップ 3.2
左辺を簡約します。
ステップ 3.2.1
2つの負の値を割ると正の値になります。
ステップ 3.2.2
をで割ります。
ステップ 3.3
右辺を簡約します。
ステップ 3.3.1
をで割ります。
ステップ 4
方程式の両辺にを足します。
ステップ 5
各因数について解き、絶対値式が負から正になる値を求めます。
ステップ 6
解をまとめます。
ステップ 7
ステップ 7.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 7.2
方程式の両辺にを足します。
ステップ 7.3
定義域は式が定義になるのすべての値です。
ステップ 8
各根を利用して検定区間を作成します。
ステップ 9
ステップ 9.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 9.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 9.1.2
を元の不等式ので置き換えます。
ステップ 9.1.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
偽
偽
ステップ 9.2
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 9.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 9.2.2
を元の不等式ので置き換えます。
ステップ 9.2.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
真
真
ステップ 9.3
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 9.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 9.3.2
を元の不等式ので置き換えます。
ステップ 9.3.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
偽
偽
ステップ 9.4
区間を比較して、どちらが元の不等式を満たすか判定します。
偽
真
偽
偽
真
偽
ステップ 10
解はすべての真の区間からなります。
ステップ 11
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 12