代数 例

Решить неравенство относительно x x^2-4x+4>0の平方根
ステップ 1
不等式の左辺から根を削除するため、不等式の両辺を2乗します。
ステップ 2
不等式の各辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
を利用し、に書き換えます。
ステップ 2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.2.1.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.2.1
共通因数を約分します。
ステップ 2.2.1.1.2.2
式を書き換えます。
ステップ 2.2.1.2
簡約します。
ステップ 2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
を正数乗し、を得ます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
不等式を方程式に変換します。
ステップ 3.2
完全平方式を利用して因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.1
に書き換えます。
ステップ 3.2.2
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 3.2.3
多項式を書き換えます。
ステップ 3.2.4
ならば、完全平方3項式を利用して因数分解します。
ステップ 3.3
に等しいとします。
ステップ 3.4
方程式の両辺にを足します。
ステップ 4
各根を利用して検定区間を作成します。
ステップ 5
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 5.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 5.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 5.1.2
を元の不等式ので置き換えます。
ステップ 5.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
ステップ 5.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 5.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 5.2.2
を元の不等式ので置き換えます。
ステップ 5.2.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
ステップ 5.3
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 6
解はすべての真の区間からなります。
または
ステップ 7
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 8