代数 例

Решить систему Equations 8y=-10x y^2=2x^2-7
ステップ 1
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.1
の各項をで割ります。
ステップ 1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1
共通因数を約分します。
ステップ 1.2.1.2
で割ります。
ステップ 1.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.3.1.1
で因数分解します。
ステップ 1.3.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.3.1.2.1
で因数分解します。
ステップ 1.3.1.2.2
共通因数を約分します。
ステップ 1.3.1.2.3
式を書き換えます。
ステップ 1.3.2
分数の前に負数を移動させます。
ステップ 2
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 2.1
のすべての発生をで置き換えます。
ステップ 2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
べき乗則を利用して指数を分配します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.1
積の法則をに当てはめます。
ステップ 2.2.1.1.2
積の法則をに当てはめます。
ステップ 2.2.1.1.3
積の法則をに当てはめます。
ステップ 2.2.1.2
乗します。
ステップ 2.2.1.3
をかけます。
ステップ 2.2.1.4
乗します。
ステップ 2.2.1.5
乗します。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
両辺にを掛けます。
ステップ 3.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.1
共通因数を約分します。
ステップ 3.2.1.1.2
式を書き換えます。
ステップ 3.2.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
分配則を当てはめます。
ステップ 3.2.2.1.2
掛け算します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.2.1
をかけます。
ステップ 3.2.2.1.2.2
をかけます。
ステップ 3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.1
を含むすべての項を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 3.3.1.1
方程式の両辺からを引きます。
ステップ 3.3.1.2
からを引きます。
ステップ 3.3.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.1
の各項をで割ります。
ステップ 3.3.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1.1
共通因数を約分します。
ステップ 3.3.2.2.1.2
で割ります。
ステップ 3.3.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.3.1
で割ります。
ステップ 3.3.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.3.4
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.4.1
に書き換えます。
ステップ 3.3.4.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.3.5
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 3.3.5.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.3.5.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.3.5.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 4.1
のすべての発生をで置き換えます。
ステップ 4.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1.1
共通因数を約分します。
ステップ 4.2.1.1.2
で割ります。
ステップ 4.2.1.2
をかけます。
ステップ 5
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 5.1
のすべての発生をで置き換えます。
ステップ 5.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1.1
で因数分解します。
ステップ 5.2.1.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1.2.1
で因数分解します。
ステップ 5.2.1.1.2.2
共通因数を約分します。
ステップ 5.2.1.1.2.3
式を書き換えます。
ステップ 5.2.1.1.2.4
で割ります。
ステップ 5.2.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 5.2.1.2.1
をかけます。
ステップ 5.2.1.2.2
をかけます。
ステップ 6
式の解は、有効な解である順序対の完全集合です。
ステップ 7
結果は複数の形で表すことができます。
点の形:
方程式の形:
ステップ 8