代数 例

簡略化 ((2a-b)^2)÷((4a^3-ab^2)/3)
ステップ 1
分数を割るために、その逆数を掛けます。
ステップ 2
に書き換えます。
ステップ 3
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 3.1
分配則を当てはめます。
ステップ 3.2
分配則を当てはめます。
ステップ 3.3
分配則を当てはめます。
ステップ 4
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 4.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.1
積の可換性を利用して書き換えます。
ステップ 4.1.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
を移動させます。
ステップ 4.1.2.2
をかけます。
ステップ 4.1.3
をかけます。
ステップ 4.1.4
積の可換性を利用して書き換えます。
ステップ 4.1.5
をかけます。
ステップ 4.1.6
積の可換性を利用して書き換えます。
ステップ 4.1.7
をかけます。
ステップ 4.1.8
積の可換性を利用して書き換えます。
ステップ 4.1.9
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.1.9.1
を移動させます。
ステップ 4.1.9.2
をかけます。
ステップ 4.1.10
をかけます。
ステップ 4.1.11
をかけます。
ステップ 4.2
からを引きます。
タップして手順をさらに表示してください…
ステップ 4.2.1
を移動させます。
ステップ 4.2.2
からを引きます。
ステップ 5
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 5.1.1
で因数分解します。
ステップ 5.1.2
で因数分解します。
ステップ 5.1.3
で因数分解します。
ステップ 5.2
に書き換えます。
ステップ 5.3
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 6
をかけます。
ステップ 7
完全平方式を利用して因数分解します。
タップして手順をさらに表示してください…
ステップ 7.1
に書き換えます。
ステップ 7.2
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 7.3
多項式を書き換えます。
ステップ 7.4
ならば、完全平方3項式を利用して因数分解します。
ステップ 8
今日数因数で約分することで式を約分します。
タップして手順をさらに表示してください…
ステップ 8.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.1.1
で因数分解します。
ステップ 8.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.1.2.1
で因数分解します。
ステップ 8.1.2.2
共通因数を約分します。
ステップ 8.1.2.3
式を書き換えます。
ステップ 8.2
の左に移動させます。