代数 例

デカルトの符号法律を使いゼロを求める g(x)=2x^4+4x^3+6x^2+8x+9
ステップ 1
正の根の可能な数を求めるために、係数の符号を見て、係数の符号が正から負、負から正に変化した回数を数えます。
ステップ 2
高次の項から低次の項へ符号の反転があるので、最大でもの正の根があります(デカルトの符号法則)。
正根:
ステップ 3
負の根の可能な数を求めるために、に置き換えて符号の比較を繰り返します。
ステップ 4
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
積の法則をに当てはめます。
ステップ 4.2
乗します。
ステップ 4.3
をかけます。
ステップ 4.4
積の法則をに当てはめます。
ステップ 4.5
乗します。
ステップ 4.6
をかけます。
ステップ 4.7
積の法則をに当てはめます。
ステップ 4.8
乗します。
ステップ 4.9
をかけます。
ステップ 4.10
をかけます。
ステップ 5
高次の項から低次の項へ符号の反転があるので、最大でもの負の根があります(デカルトの符号法則)。負の根の他の数は、根の対を引くことで求めます(例:)。
負の根:, , or
ステップ 6
正根の可能な数はで、負根の可能な数は, , or です。
正根:
負の根:, , or