三角関数 例
ステップ 1
ステップ 1.1
たすき掛けを利用してを因数分解します。
ステップ 1.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.1.2
この整数を利用して因数分解の形を書きます。
ステップ 1.2
分母の各因数に対して、その因数を分母として、未知の値を分子として利用し、新たな分数を作成します。分母の因数は線形なので、その場所には1個の変数を置きます。
ステップ 1.3
分母の各因数に対して、その因数を分母として、未知の値を分子として利用し、新たな分数を作成します。分母の因数は線形なので、その場所には1個の変数を置きます。
ステップ 1.4
方程式の各分数に元の式の分母を掛けます。この場合、分母はです。
ステップ 1.5
の共通因数を約分します。
ステップ 1.5.1
共通因数を約分します。
ステップ 1.5.2
式を書き換えます。
ステップ 1.6
の共通因数を約分します。
ステップ 1.6.1
共通因数を約分します。
ステップ 1.6.2
をで割ります。
ステップ 1.7
各項を簡約します。
ステップ 1.7.1
の共通因数を約分します。
ステップ 1.7.1.1
共通因数を約分します。
ステップ 1.7.1.2
をで割ります。
ステップ 1.7.2
分配則を当てはめます。
ステップ 1.7.3
にをかけます。
ステップ 1.7.4
の共通因数を約分します。
ステップ 1.7.4.1
共通因数を約分します。
ステップ 1.7.4.2
をで割ります。
ステップ 1.7.5
分配則を当てはめます。
ステップ 1.7.6
をの左に移動させます。
ステップ 1.8
を移動させます。
ステップ 2
ステップ 2.1
式の両辺からの係数を等しくし、部分分数の変数の方程式を作成します。方程式を等しくするために、方程式の両辺の等価係数は等しくなければなりません。
ステップ 2.2
式の両辺からを含まない項の係数を等しくし、部分分数の変数の方程式を作成します。方程式を等しくするために、方程式の両辺の等価係数は等しくなければなりません。
ステップ 2.3
連立方程式を立て、部分分数の係数を求めます。
ステップ 3
ステップ 3.1
のについて解きます。
ステップ 3.1.1
方程式をとして書き換えます。
ステップ 3.1.2
方程式の両辺からを引きます。
ステップ 3.2
各方程式ののすべての発生をで置き換えます。
ステップ 3.2.1
ののすべての発生をで置き換えます。
ステップ 3.2.2
右辺を簡約します。
ステップ 3.2.2.1
からを引きます。
ステップ 3.3
のについて解きます。
ステップ 3.3.1
方程式をとして書き換えます。
ステップ 3.3.2
を含まないすべての項を方程式の右辺に移動させます。
ステップ 3.3.2.1
方程式の両辺からを引きます。
ステップ 3.3.2.2
からを引きます。
ステップ 3.3.3
の各項をで割り、簡約します。
ステップ 3.3.3.1
の各項をで割ります。
ステップ 3.3.3.2
左辺を簡約します。
ステップ 3.3.3.2.1
の共通因数を約分します。
ステップ 3.3.3.2.1.1
共通因数を約分します。
ステップ 3.3.3.2.1.2
をで割ります。
ステップ 3.3.3.3
右辺を簡約します。
ステップ 3.3.3.3.1
をで割ります。
ステップ 3.4
各方程式ののすべての発生をで置き換えます。
ステップ 3.4.1
ののすべての発生をで置き換えます。
ステップ 3.4.2
右辺を簡約します。
ステップ 3.4.2.1
を簡約します。
ステップ 3.4.2.1.1
にをかけます。
ステップ 3.4.2.1.2
からを引きます。
ステップ 3.5
すべての解をまとめます。
ステップ 4
の各部分分数の係数をとで求めた値で置き換えます。