微分積分学準備 例

ベクトルが列空間にあるか判定
,
ステップ 1
ステップ 2
ステップ 3
連立方程式を行列形式で書きます。
ステップ 4
縮小行の階段形を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
行演算を行いの項目をにします。
タップして手順をさらに表示してください…
ステップ 4.1.1
行演算を行いの項目をにします。
ステップ 4.1.2
を簡約します。
ステップ 4.2
の各要素にを掛けての項目をにします。
タップして手順をさらに表示してください…
ステップ 4.2.1
の各要素にを掛けての項目をにします。
ステップ 4.2.2
を簡約します。
ステップ 4.3
行演算を行いの項目をにします。
タップして手順をさらに表示してください…
ステップ 4.3.1
行演算を行いの項目をにします。
ステップ 4.3.2
を簡約します。
ステップ 5
結果の行列を利用して連立方程式の最終的な解とします。
ステップ 6
方程式の両辺にを足します。
ステップ 7
方程式の両辺からを引きます。
ステップ 8
解は式を真にする順序対の集合です。
ステップ 9
連立方程式の一意解がなかったので、存在するベクトルの変換はありません。線形変換がないので、ベクトルは列空間にはありません。
列空間にはありません
問題を入力
Mathwayをお使いになるにはjavascriptと最新のブラウザが必要です。