微分積分学準備 例
[4231][4231]
ステップ 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
ステップ 2
ステップ 2.1
2×22×2行列の行列式は公式|abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cbを利用して求めることができます。
4⋅1-3⋅24⋅1−3⋅2
ステップ 2.2
行列式を簡約します。
ステップ 2.2.1
各項を簡約します。
ステップ 2.2.1.1
44に11をかけます。
4-3⋅24−3⋅2
ステップ 2.2.1.2
-3−3に22をかけます。
4-64−6
4-64−6
ステップ 2.2.2
44から66を引きます。
-2−2
-2−2
-2−2
ステップ 3
Since the determinant is non-zero, the inverse exists.
ステップ 4
Substitute the known values into the formula for the inverse.
1-2[1-2-34]1−2[1−2−34]
ステップ 5
分数の前に負数を移動させます。
-12[1-2-34]−12[1−2−34]
ステップ 6
-12−12に行列の各要素を掛けます。
[-12⋅1-12⋅-2-12⋅-3-12⋅4][−12⋅1−12⋅−2−12⋅−3−12⋅4]
ステップ 7
ステップ 7.1
-1−1に11をかけます。
[-12-12⋅-2-12⋅-3-12⋅4][−12−12⋅−2−12⋅−3−12⋅4]
ステップ 7.2
22の共通因数を約分します。
ステップ 7.2.1
-12−12の先頭の負を分子に移動させます。
[-12-12⋅-2-12⋅-3-12⋅4][−12−12⋅−2−12⋅−3−12⋅4]
ステップ 7.2.2
22を-2−2で因数分解します。
[-12-12⋅(2(-1))-12⋅-3-12⋅4][−12−12⋅(2(−1))−12⋅−3−12⋅4]
ステップ 7.2.3
共通因数を約分します。
[-12-12⋅(2⋅-1)-12⋅-3-12⋅4]
ステップ 7.2.4
式を書き換えます。
[-12-1⋅-1-12⋅-3-12⋅4]
[-12-1⋅-1-12⋅-3-12⋅4]
ステップ 7.3
-1に-1をかけます。
[-121-12⋅-3-12⋅4]
ステップ 7.4
-12⋅-3を掛けます。
ステップ 7.4.1
-3に-1をかけます。
[-1213(12)-12⋅4]
ステップ 7.4.2
3と12をまとめます。
[-12132-12⋅4]
[-12132-12⋅4]
ステップ 7.5
2の共通因数を約分します。
ステップ 7.5.1
-12の先頭の負を分子に移動させます。
[-12132-12⋅4]
ステップ 7.5.2
2を4で因数分解します。
[-12132-12⋅(2(2))]
ステップ 7.5.3
共通因数を約分します。
[-12132-12⋅(2⋅2)]
ステップ 7.5.4
式を書き換えます。
[-12132-1⋅2]
[-12132-1⋅2]
ステップ 7.6
-1に2をかけます。
[-12132-2]
[-12132-2]