微分積分学準備 例
ステップ 1
方程式の両辺にを足します。
ステップ 2
ステップ 2.1
式を利用して、、、の値を求めます。
ステップ 2.2
放物線の標準形を考えます。
ステップ 2.3
公式を利用しての値を求めます。
ステップ 2.3.1
との値を公式に代入します。
ステップ 2.3.2
の共通因数を約分します。
ステップ 2.3.2.1
共通因数を約分します。
ステップ 2.3.2.2
式を書き換えます。
ステップ 2.4
公式を利用しての値を求めます。
ステップ 2.4.1
、、およびの値を公式に代入します。
ステップ 2.4.2
右辺を簡約します。
ステップ 2.4.2.1
各項を簡約します。
ステップ 2.4.2.1.1
を乗します。
ステップ 2.4.2.1.2
にをかけます。
ステップ 2.4.2.1.3
の共通因数を約分します。
ステップ 2.4.2.1.3.1
共通因数を約分します。
ステップ 2.4.2.1.3.2
式を書き換えます。
ステップ 2.4.2.1.4
にをかけます。
ステップ 2.4.2.2
からを引きます。
ステップ 2.5
、、およびの値を頂点形に代入します。
ステップ 3
を方程式の中のに代入します。
ステップ 4
両辺にを加えて、を方程式の右辺に移動させます。
ステップ 5
ステップ 5.1
式を利用して、、、の値を求めます。
ステップ 5.2
放物線の標準形を考えます。
ステップ 5.3
公式を利用しての値を求めます。
ステップ 5.3.1
との値を公式に代入します。
ステップ 5.3.2
右辺を簡約します。
ステップ 5.3.2.1
との共通因数を約分します。
ステップ 5.3.2.1.1
をで因数分解します。
ステップ 5.3.2.1.2
共通因数を約分します。
ステップ 5.3.2.1.2.1
をで因数分解します。
ステップ 5.3.2.1.2.2
共通因数を約分します。
ステップ 5.3.2.1.2.3
式を書き換えます。
ステップ 5.3.2.2
との共通因数を約分します。
ステップ 5.3.2.2.1
をで因数分解します。
ステップ 5.3.2.2.2
共通因数を約分します。
ステップ 5.3.2.2.2.1
をで因数分解します。
ステップ 5.3.2.2.2.2
共通因数を約分します。
ステップ 5.3.2.2.2.3
式を書き換えます。
ステップ 5.3.2.2.2.4
をで割ります。
ステップ 5.4
公式を利用しての値を求めます。
ステップ 5.4.1
、、およびの値を公式に代入します。
ステップ 5.4.2
右辺を簡約します。
ステップ 5.4.2.1
各項を簡約します。
ステップ 5.4.2.1.1
を乗します。
ステップ 5.4.2.1.2
にをかけます。
ステップ 5.4.2.1.3
をで割ります。
ステップ 5.4.2.1.4
にをかけます。
ステップ 5.4.2.2
とをたし算します。
ステップ 5.5
、、およびの値を頂点形に代入します。
ステップ 6
を方程式の中のに代入します。
ステップ 7
両辺にを加えて、を方程式の右辺に移動させます。
ステップ 8
ステップ 8.1
とをたし算します。
ステップ 8.2
からを引きます。
ステップ 9
各項をで割り、右辺を1と等しくします。
ステップ 10
方程式の各項を簡約し、右辺をに等しくします。楕円または双曲線の標準形は、方程式の右辺がに等しいことが必要です。