例
f(x)=x
ステップ 1
関数が奇関数、偶関数、またはそのどちらでもないか判定し、対称を求めます。
1. 奇数のとき、この関数は原点に対して対称です。
2. 偶数のとき、関数はy軸に対して対称です。
ステップ 2
ステップ 2.1
f(x)内のxの出現回数をすべて−xに代入してf(−x)を求めます。
f(−x)=−x
ステップ 2.2
括弧を削除します。
f(−x)=−x
f(−x)=−x
ステップ 3
ステップ 3.1
f(−x)=f(x)ならば確認します。
ステップ 3.2
−x≠xなので、関数は偶関数ではありません。
関数は偶関数ではありません
関数は偶関数ではありません
ステップ 4
ステップ 4.1
−1にxをかけます。
−f(x)=−x
ステップ 4.2
−x=−xなので、関数は奇関数です。
関数は奇関数です。
関数は奇関数です。
ステップ 5
関数が奇数なので、原点に対して対称です。
原点対称
ステップ 6
関数が偶数ではないので、y軸に対して対称ではありません。
y軸対称がありません
ステップ 7
関数の対称性を判定します。
原点対称
ステップ 8