Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 2
Qualsiasi radice di è .
Passaggio 3
Passaggio 3.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 5
Passaggio 5.1
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 5.2
Semplifica il lato destro.
Passaggio 5.2.1
Il valore esatto di è .
Passaggio 5.3
La funzione tangente è positiva nel primo e nel terzo quadrante. Per trovare la seconda soluzione, aggiungi l'angolo di riferimento da per determinare la soluzione nel quarto quadrante.
Passaggio 5.4
Semplifica .
Passaggio 5.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.4.2
Riduci le frazioni.
Passaggio 5.4.2.1
e .
Passaggio 5.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 5.4.3
Semplifica il numeratore.
Passaggio 5.4.3.1
Sposta alla sinistra di .
Passaggio 5.4.3.2
Somma e .
Passaggio 5.5
Trova il periodo di .
Passaggio 5.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.5.2
Sostituisci con nella formula per il periodo.
Passaggio 5.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.5.4
Dividi per .
Passaggio 5.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 6
Passaggio 6.1
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 6.2
Semplifica il lato destro.
Passaggio 6.2.1
Il valore esatto di è .
Passaggio 6.3
La funzione tangente è negativa nel secondo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 6.4
Semplifica l'espressione per trovare la seconda soluzione.
Passaggio 6.4.1
Somma a .
Passaggio 6.4.2
L'angolo risultante di è positivo e coterminale con .
Passaggio 6.5
Trova il periodo di .
Passaggio 6.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 6.5.2
Sostituisci con nella formula per il periodo.
Passaggio 6.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 6.5.4
Dividi per .
Passaggio 6.6
Somma a ogni angolo negativo per ottenere gli angoli positivi.
Passaggio 6.6.1
Somma a per trovare l'angolo positivo.
Passaggio 6.6.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 6.6.3
Riduci le frazioni.
Passaggio 6.6.3.1
e .
Passaggio 6.6.3.2
Riduci i numeratori su un comune denominatore.
Passaggio 6.6.4
Semplifica il numeratore.
Passaggio 6.6.4.1
Sposta alla sinistra di .
Passaggio 6.6.4.2
Sottrai da .
Passaggio 6.6.5
Fai un elenco dei nuovi angoli.
Passaggio 6.7
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 7
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 8
Consolida le risposte.
, per qualsiasi intero