Trigonometria Esempi

Trovare il Valore Massimo/Minimo f(t)=2/3cos(t)
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
La derivata di rispetto a è .
Passaggio 1.3
e .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
La derivata di rispetto a è .
Passaggio 2.3
Semplifica.
Tocca per altri passaggi...
Passaggio 2.3.1
e .
Passaggio 2.3.2
Sposta alla sinistra di .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Poni il numeratore uguale a zero.
Passaggio 5
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 5.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.1.1
Dividi per ciascun termine in .
Passaggio 5.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.1.2.1.1
Elimina il fattore comune.
Passaggio 5.1.2.1.2
Dividi per .
Passaggio 5.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.1.3.1
Dividi per .
Passaggio 5.2
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 5.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.3.1
Il valore esatto di è .
Passaggio 5.4
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 5.5
Sottrai da .
Passaggio 5.6
La soluzione dell'equazione .
Passaggio 6
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 7
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 7.1
Il valore esatto di è .
Passaggio 7.2
Moltiplica per .
Passaggio 8
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 9
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 9.1
Sostituisci la variabile con nell'espressione.
Passaggio 9.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 9.2.1
Il valore esatto di è .
Passaggio 9.2.2
Moltiplica per .
Passaggio 9.2.3
La risposta finale è .
Passaggio 10
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 11
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 11.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 11.1.1
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il coseno è negativo nel secondo quadrante.
Passaggio 11.1.2
Il valore esatto di è .
Passaggio 11.1.3
Moltiplica per .
Passaggio 11.2
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 11.2.1
Moltiplica per .
Passaggio 11.2.2
Sposta il negativo davanti alla frazione.
Passaggio 11.3
Moltiplica .
Tocca per altri passaggi...
Passaggio 11.3.1
Moltiplica per .
Passaggio 11.3.2
Moltiplica per .
Passaggio 12
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 13
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 13.1
Sostituisci la variabile con nell'espressione.
Passaggio 13.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 13.2.1
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il coseno è negativo nel secondo quadrante.
Passaggio 13.2.2
Il valore esatto di è .
Passaggio 13.2.3
Moltiplica per .
Passaggio 13.2.4
Moltiplica .
Tocca per altri passaggi...
Passaggio 13.2.4.1
e .
Passaggio 13.2.4.2
Moltiplica per .
Passaggio 13.2.5
Sposta il negativo davanti alla frazione.
Passaggio 13.2.6
La risposta finale è .
Passaggio 14
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
Passaggio 15