Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Eleva al quadrato entrambi i lati dell'equazione.
Passaggio 2
Passaggio 2.1
Semplifica ciascun termine.
Passaggio 2.1.1
Il valore esatto di è .
Passaggio 2.1.2
Moltiplica per .
Passaggio 2.1.3
Il valore esatto di è .
Passaggio 2.1.4
Moltiplica per .
Passaggio 2.2
Somma e .
Passaggio 3
Passaggio 3.1
Utilizza la regola per la potenza di una potenza per distribuire l'esponente.
Passaggio 3.1.1
Applica la regola del prodotto a .
Passaggio 3.1.2
Applica la regola del prodotto a .
Passaggio 3.2
Eleva alla potenza di .
Passaggio 3.3
Moltiplica per .
Passaggio 3.4
Uno elevato a qualsiasi potenza è uno.
Passaggio 3.5
Eleva alla potenza di .
Passaggio 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 5
Passaggio 5.1
Riscrivi come .
Passaggio 5.2
Qualsiasi radice di è .
Passaggio 5.3
Semplifica il denominatore.
Passaggio 5.3.1
Riscrivi come .
Passaggio 5.3.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 6
Passaggio 6.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 6.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 7
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 8
Passaggio 8.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 8.2
Semplifica il lato destro.
Passaggio 8.2.1
Il valore esatto di è .
Passaggio 8.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 8.4
Semplifica .
Passaggio 8.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 8.4.2
Riduci le frazioni.
Passaggio 8.4.2.1
e .
Passaggio 8.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 8.4.3
Semplifica il numeratore.
Passaggio 8.4.3.1
Moltiplica per .
Passaggio 8.4.3.2
Sottrai da .
Passaggio 8.5
Trova il periodo di .
Passaggio 8.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 8.5.2
Sostituisci con nella formula per il periodo.
Passaggio 8.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 8.5.4
Dividi per .
Passaggio 8.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 9
Passaggio 9.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 9.2
Semplifica il lato destro.
Passaggio 9.2.1
Il valore esatto di è .
Passaggio 9.3
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 9.4
Semplifica .
Passaggio 9.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 9.4.2
Riduci le frazioni.
Passaggio 9.4.2.1
e .
Passaggio 9.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 9.4.3
Semplifica il numeratore.
Passaggio 9.4.3.1
Moltiplica per .
Passaggio 9.4.3.2
Sottrai da .
Passaggio 9.5
Trova il periodo di .
Passaggio 9.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 9.5.2
Sostituisci con nella formula per il periodo.
Passaggio 9.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 9.5.4
Dividi per .
Passaggio 9.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 10
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 11
Passaggio 11.1
Combina e in .
, per qualsiasi intero
Passaggio 11.2
Combina e in .
, per qualsiasi intero
, per qualsiasi intero
Passaggio 12
Escludi le soluzioni che non rendono vera.
, per qualsiasi intero