Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Scambia le variabili.
Passaggio 2
Passaggio 2.1
Riscrivi l'equazione come .
Passaggio 2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 2.4
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.5
Semplifica.
Passaggio 2.5.1
Semplifica il numeratore.
Passaggio 2.5.1.1
Scomponi da .
Passaggio 2.5.1.1.1
Scomponi da .
Passaggio 2.5.1.1.2
Scomponi da .
Passaggio 2.5.1.1.3
Scomponi da .
Passaggio 2.5.1.2
Moltiplica per .
Passaggio 2.5.1.3
Sottrai da .
Passaggio 2.5.1.4
Riscrivi come .
Passaggio 2.5.1.4.1
Scomponi da .
Passaggio 2.5.1.4.2
Riscrivi come .
Passaggio 2.5.1.4.3
Aggiungi le parentesi.
Passaggio 2.5.1.5
Estrai i termini dal radicale.
Passaggio 2.5.2
Moltiplica per .
Passaggio 2.5.3
Semplifica .
Passaggio 2.6
Semplifica l'espressione per risolvere per la porzione di .
Passaggio 2.6.1
Semplifica il numeratore.
Passaggio 2.6.1.1
Scomponi da .
Passaggio 2.6.1.1.1
Scomponi da .
Passaggio 2.6.1.1.2
Scomponi da .
Passaggio 2.6.1.1.3
Scomponi da .
Passaggio 2.6.1.2
Moltiplica per .
Passaggio 2.6.1.3
Sottrai da .
Passaggio 2.6.1.4
Riscrivi come .
Passaggio 2.6.1.4.1
Scomponi da .
Passaggio 2.6.1.4.2
Riscrivi come .
Passaggio 2.6.1.4.3
Aggiungi le parentesi.
Passaggio 2.6.1.5
Estrai i termini dal radicale.
Passaggio 2.6.2
Moltiplica per .
Passaggio 2.6.3
Semplifica .
Passaggio 2.6.4
Cambia da a .
Passaggio 2.7
Semplifica l'espressione per risolvere per la porzione di .
Passaggio 2.7.1
Semplifica il numeratore.
Passaggio 2.7.1.1
Scomponi da .
Passaggio 2.7.1.1.1
Scomponi da .
Passaggio 2.7.1.1.2
Scomponi da .
Passaggio 2.7.1.1.3
Scomponi da .
Passaggio 2.7.1.2
Moltiplica per .
Passaggio 2.7.1.3
Sottrai da .
Passaggio 2.7.1.4
Riscrivi come .
Passaggio 2.7.1.4.1
Scomponi da .
Passaggio 2.7.1.4.2
Riscrivi come .
Passaggio 2.7.1.4.3
Aggiungi le parentesi.
Passaggio 2.7.1.5
Estrai i termini dal radicale.
Passaggio 2.7.2
Moltiplica per .
Passaggio 2.7.3
Semplifica .
Passaggio 2.7.4
Cambia da a .
Passaggio 2.8
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 3
Replace with to show the final answer.
Passaggio 4
Passaggio 4.1
Il dominio dell'inverso è l'intervallo della funzione originale e viceversa. Trova il dominio e l'intervallo di e e confrontali.
Passaggio 4.2
Trova l'intervallo di .
Passaggio 4.2.1
L'intervallo è l'insieme di tutti i valori validi. Usa il grafico per trovare l'intervallo.
Notazione degli intervalli:
Passaggio 4.3
Trova il dominio di .
Passaggio 4.3.1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 4.3.2
Risolvi per .
Passaggio 4.3.2.1
Dividi per ciascun termine in e semplifica.
Passaggio 4.3.2.1.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 4.3.2.1.2
Semplifica il lato sinistro.
Passaggio 4.3.2.1.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.3.2.1.2.2
Dividi per .
Passaggio 4.3.2.1.3
Semplifica il lato destro.
Passaggio 4.3.2.1.3.1
Dividi per .
Passaggio 4.3.2.2
Aggiungi a entrambi i lati della diseguaglianza.
Passaggio 4.3.2.3
Dividi per ciascun termine in e semplifica.
Passaggio 4.3.2.3.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 4.3.2.3.2
Semplifica il lato sinistro.
Passaggio 4.3.2.3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.3.2.3.2.2
Dividi per .
Passaggio 4.3.2.3.3
Semplifica il lato destro.
Passaggio 4.3.2.3.3.1
Dividi per .
Passaggio 4.3.3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 4.4
Trova il dominio di .
Passaggio 4.4.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4.5
Poiché il dominio di è l'intervallo di e l'intervallo di è il dominio di , allora è l'inverso di .
Passaggio 5