Trigonometria Esempi

求解x -1* logaritmo in base 5 di x-4>0
Passaggio 1
Converti la diseguaglianza in un'uguaglianza.
Passaggio 2
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 2.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.1.1
Dividi per ciascun termine in .
Passaggio 2.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.1.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.1.2.2
Dividi per .
Passaggio 2.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.1.3.1
Dividi per .
Passaggio 2.2
Riscrivi in forma esponenziale usando la definizione di logaritmo. Se e sono numeri reali positivi e , allora è equivalente a .
Passaggio 2.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.3.1
Riscrivi l'equazione come .
Passaggio 2.3.2
Qualsiasi valore elevato a è .
Passaggio 2.3.3
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Somma a entrambi i lati dell'equazione.
Passaggio 2.3.3.2
Somma e .
Passaggio 3
Trova il dominio di .
Tocca per altri passaggi...
Passaggio 3.1
Imposta l'argomento in in modo che sia maggiore di per individuare dove l'espressione è definita.
Passaggio 3.2
Aggiungi a entrambi i lati della diseguaglianza.
Passaggio 3.3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 4
Usa ogni radice per creare gli intervalli di prova.
Passaggio 5
Scegli un valore di test da ciascun intervallo e sostituiscilo nella diseguaglianza originale per determinare quali intervalli sono soddisfatti dalla diseguaglianza.
Tocca per altri passaggi...
Passaggio 5.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Tocca per altri passaggi...
Passaggio 5.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.1.3
Determina se la diseguaglianza è vera.
Tocca per altri passaggi...
Passaggio 5.1.3.1
Non è possibile risolvere l'equazione perché è indefinita.
Passaggio 5.1.3.2
Il lato sinistro non ha soluzione; ciò significa che l'affermazione data è falsa.
Falso
Falso
Falso
Passaggio 5.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Tocca per altri passaggi...
Passaggio 5.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.2.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 5.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Tocca per altri passaggi...
Passaggio 5.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.3.3
Il lato sinistro di non è maggiore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 5.4
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Falso
Vero
Falso
Falso
Vero
Falso
Passaggio 6
La soluzione è costituita da tutti gli intervalli veri.
Passaggio 7
Il risultato può essere mostrato in più forme.
Forma della diseguaglianza:
Notazione degli intervalli:
Passaggio 8