Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Sostituisci con in base all'identità .
Passaggio 3
Passaggio 3.1
Applica la proprietà distributiva.
Passaggio 3.2
Moltiplica per .
Passaggio 3.3
Moltiplica per .
Passaggio 4
Sottrai da .
Passaggio 5
Riordina il polinomio.
Passaggio 6
Sostituisci a .
Passaggio 7
Passaggio 7.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 7.1.1
Scomponi da .
Passaggio 7.1.2
Riscrivi come più .
Passaggio 7.1.3
Applica la proprietà distributiva.
Passaggio 7.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 7.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 7.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 7.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 8
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 9
Passaggio 9.1
Imposta uguale a .
Passaggio 9.2
Somma a entrambi i lati dell'equazione.
Passaggio 10
Passaggio 10.1
Imposta uguale a .
Passaggio 10.2
Risolvi per .
Passaggio 10.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 10.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 10.2.2.1
Dividi per ciascun termine in .
Passaggio 10.2.2.2
Semplifica il lato sinistro.
Passaggio 10.2.2.2.1
Elimina il fattore comune di .
Passaggio 10.2.2.2.1.1
Elimina il fattore comune.
Passaggio 10.2.2.2.1.2
Dividi per .
Passaggio 10.2.2.3
Semplifica il lato destro.
Passaggio 10.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 11
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 12
Sostituisci a .
Passaggio 13
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 14
Passaggio 14.1
L'intervallo del coseno è . Dato che non rientra nell'intervallo, non c'è soluzione.
Nessuna soluzione
Nessuna soluzione
Passaggio 15
Passaggio 15.1
L'intervallo del coseno è . Dato che non rientra nell'intervallo, non c'è soluzione.
Nessuna soluzione
Nessuna soluzione