Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Converti la diseguaglianza in un'uguaglianza.
Passaggio 2
Passaggio 2.1
Riscrivi nella forma esponenziale usando la definizione di logaritmo. Se e sono numeri reali positivi e , allora è equivalente a .
Passaggio 2.2
Esegui la moltiplicazione incrociata per rimuovere la frazione.
Passaggio 2.3
Semplifica .
Passaggio 2.3.1
Eleva alla potenza di .
Passaggio 2.3.2
Applica la proprietà distributiva.
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Sposta tutti i termini contenenti sul lato sinistro dell'equazione.
Passaggio 2.4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.4.2
Sottrai da .
Passaggio 2.5
Dividi per ciascun termine in e semplifica.
Passaggio 2.5.1
Dividi per ciascun termine in .
Passaggio 2.5.2
Semplifica il lato sinistro.
Passaggio 2.5.2.1
Elimina il fattore comune di .
Passaggio 2.5.2.1.1
Elimina il fattore comune.
Passaggio 2.5.2.1.2
Dividi per .
Passaggio 2.5.3
Semplifica il lato destro.
Passaggio 2.5.3.1
Dividi per .
Passaggio 3
Passaggio 3.1
Imposta l'argomento in in modo che sia maggiore di per individuare dove l'espressione è definita.
Passaggio 3.2
Risolvi per .
Passaggio 3.2.1
Trova tutti i valori in cui l'espressione passa da negativa a positiva ponendo ciascun fattore uguale a e risolvendo.
Passaggio 3.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 3.2.2.1
Dividi per ciascun termine in .
Passaggio 3.2.2.2
Semplifica il lato sinistro.
Passaggio 3.2.2.2.1
Elimina il fattore comune di .
Passaggio 3.2.2.2.1.1
Elimina il fattore comune.
Passaggio 3.2.2.2.1.2
Dividi per .
Passaggio 3.2.2.3
Semplifica il lato destro.
Passaggio 3.2.2.3.1
Dividi per .
Passaggio 3.2.3
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2.4
Risolvi per ogni fattore per trovare i valori in cui l'espressione con valore assoluto passa da negativa a positiva.
Passaggio 3.2.5
Consolida le soluzioni.
Passaggio 3.2.6
Trova il dominio di .
Passaggio 3.2.6.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.2.6.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2.6.3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 3.2.7
Usa ogni radice per creare gli intervalli di prova.
Passaggio 3.2.8
Scegli un valore di test da ciascun intervallo e sostituiscilo nella diseguaglianza originale per determinare quali intervalli sono soddisfatti dalla diseguaglianza.
Passaggio 3.2.8.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 3.2.8.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 3.2.8.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 3.2.8.1.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 3.2.8.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 3.2.8.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 3.2.8.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 3.2.8.2.3
Il lato sinistro di non è maggiore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 3.2.8.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 3.2.8.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 3.2.8.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 3.2.8.3.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 3.2.8.4
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Vero
Falso
Vero
Vero
Falso
Vero
Passaggio 3.2.9
La soluzione è costituita da tutti gli intervalli veri.
o
o
Passaggio 3.3
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.4
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.5
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 4
Usa ogni radice per creare gli intervalli di prova.
Passaggio 5
Passaggio 5.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 5.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.1.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 5.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 5.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.2.3
Il lato sinistro di non è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 5.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 5.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.3.3
Determina se la diseguaglianza è vera.
Passaggio 5.3.3.1
Non è possibile risolvere l'equazione perché è indefinita.
Passaggio 5.3.3.2
Il lato sinistro non ha soluzione; ciò significa che l'affermazione data è falsa.
Falso
Falso
Falso
Passaggio 5.4
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 5.4.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.4.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.4.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 5.5
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Vero
Falso
Falso
Vero
Vero
Falso
Falso
Vero
Passaggio 6
La soluzione è costituita da tutti gli intervalli veri.
o
Passaggio 7
Il risultato può essere mostrato in più forme.
Forma della diseguaglianza:
Notazione degli intervalli:
Passaggio 8