Trigonometria Esempi

Tracciare y=1+tan(x)
Passaggio 1
Trova gli asintoti.
Tocca per altri passaggi...
Passaggio 1.1
Per qualsiasi , gli asintoti verticali si verificano con , dove è un numero intero. Utilizza il periodo di base per , , per trovare gli asintoti verticali per . Imposta l'interno della funzione tangente, , per uguale a per trovare dove gli asintoti verticali si verificano per .
Passaggio 1.2
Imposta l'interno della funzione tangente pari a .
Passaggio 1.3
Il periodo di base per si verificherà a , dove e sono asintoti verticali.
Passaggio 1.4
Individua il periodo per trovare dove esistono gli asintoti verticali.
Tocca per altri passaggi...
Passaggio 1.4.1
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 1.4.2
Dividi per .
Passaggio 1.5
Si hanno asintoti verticali di con , e con ogni , dove è un intero.
Passaggio 1.6
Ci sono solo asintoti verticali per le funzioni tangente e cotangente.
Asintoti verticali: per qualsiasi intero
Nessun asintoto orizzontale
Nessun asintoto obliquo
Asintoti verticali: per qualsiasi intero
Nessun asintoto orizzontale
Nessun asintoto obliquo
Passaggio 2
Riscrivi l'espressione come .
Passaggio 3
Utilizza la forma per trovare le variabili utilizzate per calcolare l'ampiezza, il periodo, lo sfasamento e la traslazione verticale.
Passaggio 4
Poiché il grafico della funzione non ha un valore massimo o minimo, non possono esserci dei valori per l'ampiezza.
Ampiezza: nessuna
Passaggio 5
Trova il periodo usando la formula .
Tocca per altri passaggi...
Passaggio 5.1
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 5.1.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.1.2
Sostituisci con nella formula per il periodo.
Passaggio 5.1.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.1.4
Dividi per .
Passaggio 5.2
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 5.2.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.2.2
Sostituisci con nella formula per il periodo.
Passaggio 5.2.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.2.4
Dividi per .
Passaggio 5.3
Il periodo di addizione/sottrazione delle funzioni trigonometriche è il massimo dei periodi individuali.
Passaggio 6
Trova lo sfasamento usando la formula .
Tocca per altri passaggi...
Passaggio 6.1
Si può calcolare lo sfasamento della funzione da .
Sfasamento:
Passaggio 6.2
Sostituisci i valori di e nell'equazione per lo sfasamento.
Sfasamento:
Passaggio 6.3
Dividi per .
Sfasamento:
Sfasamento:
Passaggio 7
Elenca le proprietà della funzione trigonometrica.
Ampiezza: nessuna
Periodo:
Sfasamento: nessuno
Traslazione verticale:
Passaggio 8
Si può rappresentare graficamente la funzione trigonometrica usando l'ampiezza, il periodo, lo sfasamento, la traslazione verticale e i punti.
Asintoti verticali: per qualsiasi intero
Ampiezza: nessuna
Periodo:
Sfasamento: nessuno
Traslazione verticale:
Passaggio 9