Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 2
Passaggio 2.1
Calcola .
Passaggio 3
Passaggio 3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2
Sottrai da .
Passaggio 4
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 5
Passaggio 5.1
Semplifica .
Passaggio 5.1.1
Moltiplica per .
Passaggio 5.1.2
Sottrai da .
Passaggio 5.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.2.2
Sottrai da .
Passaggio 6
Passaggio 6.1
Si può calcolare il periodo della funzione usando .
Passaggio 6.2
Sostituisci con nella formula per il periodo.
Passaggio 6.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 6.4
Dividi per .
Passaggio 7
Passaggio 7.1
Somma a per trovare l'angolo positivo.
Passaggio 7.2
Sottrai da .
Passaggio 7.3
Somma a per trovare l'angolo positivo.
Passaggio 7.4
Sottrai da .
Passaggio 7.5
Fai un elenco dei nuovi angoli.
Passaggio 8
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero