Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Sostituisci con in base all'identità .
Passaggio 2
Riordina il polinomio.
Passaggio 3
Passaggio 3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2
Sottrai da .
Passaggio 4
Passaggio 4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2
Sottrai da .
Passaggio 5
Passaggio 5.1
Dividi per ciascun termine in .
Passaggio 5.2
Semplifica il lato sinistro.
Passaggio 5.2.1
Elimina il fattore comune di .
Passaggio 5.2.1.1
Elimina il fattore comune.
Passaggio 5.2.1.2
Dividi per .
Passaggio 5.3
Semplifica il lato destro.
Passaggio 5.3.1
Dividi per .
Passaggio 6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 7
Qualsiasi radice di è .
Passaggio 8
Passaggio 8.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 8.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 8.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 9
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 10
Passaggio 10.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 10.2
Semplifica il lato destro.
Passaggio 10.2.1
Il valore esatto di è .
Passaggio 10.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 10.4
Sottrai da .
Passaggio 10.5
Trova il periodo di .
Passaggio 10.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 10.5.2
Sostituisci con nella formula per il periodo.
Passaggio 10.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 10.5.4
Dividi per .
Passaggio 10.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 11
Passaggio 11.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 11.2
Semplifica il lato destro.
Passaggio 11.2.1
Il valore esatto di è .
Passaggio 11.3
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 11.4
Sottrai da .
Passaggio 11.5
Trova il periodo di .
Passaggio 11.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 11.5.2
Sostituisci con nella formula per il periodo.
Passaggio 11.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 11.5.4
Dividi per .
Passaggio 11.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 12
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 13
Consolida le risposte.
, per qualsiasi intero