Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Sostituisci per .
Passaggio 2
Sottrai da entrambi i lati dell'equazione.
Passaggio 3
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 4
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 5
Passaggio 5.1
Semplifica il numeratore.
Passaggio 5.1.1
Eleva alla potenza di .
Passaggio 5.1.2
Moltiplica .
Passaggio 5.1.2.1
Moltiplica per .
Passaggio 5.1.2.2
Moltiplica per .
Passaggio 5.1.3
Sottrai da .
Passaggio 5.2
Moltiplica per .
Passaggio 6
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 7
Sostituisci per .
Passaggio 8
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 9
Passaggio 9.1
L'intervallo del seno è . Poiché non rientra nell'intervallo, non esiste soluzione.
Nessuna soluzione
Nessuna soluzione
Passaggio 10
Passaggio 10.1
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 10.2
Semplifica il lato destro.
Passaggio 10.2.1
Calcola .
Passaggio 10.3
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 10.4
Risolvi per .
Passaggio 10.4.1
Rimuovi le parentesi.
Passaggio 10.4.2
Rimuovi le parentesi.
Passaggio 10.4.3
Sottrai da .
Passaggio 10.5
Trova il periodo di .
Passaggio 10.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 10.5.2
Sostituisci con nella formula per il periodo.
Passaggio 10.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 10.5.4
Dividi per .
Passaggio 10.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 11
Elenca tutte le soluzioni.
, per qualsiasi intero