Trigonometria Esempi

求解x 1/x+1/(x+2)=9/40
Passaggio 1
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 1.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 1.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
I passaggi per trovare il minimo comune multiplo per sono:
1. Trova il minimo comune multiplo della parte numerica .
2. Trova il minimo comune multiplo per la parte variabile
3. Trova il minimo comune multiplo per la parte variabile composta .
4. Moltiplica tutti i minimi comuni multipli tra loro.
Passaggio 1.3
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 1.4
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 1.5
I fattori primi per sono .
Tocca per altri passaggi...
Passaggio 1.5.1
presenta fattori di e .
Passaggio 1.5.2
presenta fattori di e .
Passaggio 1.5.3
presenta fattori di e .
Passaggio 1.6
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.6.1
Moltiplica per .
Passaggio 1.6.2
Moltiplica per .
Passaggio 1.6.3
Moltiplica per .
Passaggio 1.7
Il fattore di è stesso.
si verifica volta.
Passaggio 1.8
Il minimo comune multiplo (mcm) di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 1.9
Il fattore di è stesso.
si verifica volta.
Passaggio 1.10
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 1.11
Il minimo comune multiplo di alcuni numeri è il numero più piccolo di cui i numeri sono fattori.
Passaggio 2
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 2.1
Moltiplica ogni termine in per .
Passaggio 2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.2.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.1.2
e .
Passaggio 2.2.1.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.2.1.3.1
Elimina il fattore comune.
Passaggio 2.2.1.3.2
Riscrivi l'espressione.
Passaggio 2.2.1.4
Applica la proprietà distributiva.
Passaggio 2.2.1.5
Moltiplica per .
Passaggio 2.2.1.6
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.1.7
e .
Passaggio 2.2.1.8
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.2.1.8.1
Scomponi da .
Passaggio 2.2.1.8.2
Elimina il fattore comune.
Passaggio 2.2.1.8.3
Riscrivi l'espressione.
Passaggio 2.2.2
Somma e .
Passaggio 2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.1.1
Scomponi da .
Passaggio 2.3.1.2
Elimina il fattore comune.
Passaggio 2.3.1.3
Riscrivi l'espressione.
Passaggio 2.3.2
Applica la proprietà distributiva.
Passaggio 2.3.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Moltiplica per .
Passaggio 2.3.3.2
Sposta alla sinistra di .
Passaggio 2.3.4
Applica la proprietà distributiva.
Passaggio 2.3.5
Moltiplica per .
Passaggio 3
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 3.1
Poiché si trova sul lato destro dell'equazione, inverti i lati così che si trovi sul lato sinistro.
Passaggio 3.2
Sposta tutti i termini contenenti sul lato sinistro dell'equazione.
Tocca per altri passaggi...
Passaggio 3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2.2
Sottrai da .
Passaggio 3.3
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.4
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 3.4.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 3.4.1.1
Scomponi da .
Passaggio 3.4.1.2
Riscrivi come più .
Passaggio 3.4.1.3
Applica la proprietà distributiva.
Passaggio 3.4.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 3.4.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 3.4.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 3.4.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 3.5
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.6.1
Imposta uguale a .
Passaggio 3.6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.6.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.6.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 3.6.2.2.1
Dividi per ciascun termine in .
Passaggio 3.6.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.6.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.6.2.2.2.1.1
Elimina il fattore comune.
Passaggio 3.6.2.2.2.1.2
Dividi per .
Passaggio 3.6.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.6.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 3.7
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.7.1
Imposta uguale a .
Passaggio 3.7.2
Somma a entrambi i lati dell'equazione.
Passaggio 3.8
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 4
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale:
Forma numero misto: