Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Passaggio 1.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Passaggio 1.3
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 1.4
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 1.5
Poiché non presenta fattori eccetto e .
è un numero primo
Passaggio 1.6
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 1.7
Il fattore di è stesso.
si verifica volta.
Passaggio 1.8
Il minimo comune multiplo (mcm) di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 1.9
Il minimo comune multiplo di è la parte numerica moltiplicata per la parte variabile.
Passaggio 2
Passaggio 2.1
Moltiplica ogni termine in per .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.2
e .
Passaggio 2.2.3
Elimina il fattore comune di .
Passaggio 2.2.3.1
Elimina il fattore comune.
Passaggio 2.2.3.2
Riscrivi l'espressione.
Passaggio 2.3
Semplifica il lato destro.
Passaggio 2.3.1
Elimina il fattore comune di .
Passaggio 2.3.1.1
Scomponi da .
Passaggio 2.3.1.2
Elimina il fattore comune.
Passaggio 2.3.1.3
Riscrivi l'espressione.
Passaggio 3
Passaggio 3.1
Riscrivi l'equazione come .
Passaggio 3.2
Dividi per ciascun termine in e semplifica.
Passaggio 3.2.1
Dividi per ciascun termine in .
Passaggio 3.2.2
Semplifica il lato sinistro.
Passaggio 3.2.2.1
Elimina il fattore comune di .
Passaggio 3.2.2.1.1
Elimina il fattore comune.
Passaggio 3.2.2.1.2
Dividi per .
Passaggio 4
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 5
Passaggio 5.1
Calcola .
Passaggio 6
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 7
Passaggio 7.1
Moltiplica per .
Passaggio 7.2
Sottrai da .
Passaggio 8
Passaggio 8.1
Si può calcolare il periodo della funzione usando .
Passaggio 8.2
Sostituisci con nella formula per il periodo.
Passaggio 8.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 8.4
Dividi per .
Passaggio 9
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero