Trigonometria Esempi

求解x 30/(x^2+9)+1=5/-3
Passaggio 1
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2
Sposta il negativo davanti alla frazione.
Passaggio 1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.4
e .
Passaggio 1.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.6.1
Moltiplica per .
Passaggio 1.6.2
Sottrai da .
Passaggio 1.7
Sposta il negativo davanti alla frazione.
Passaggio 2
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 2.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.2
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 2.3
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 2.4
Poiché non presenta fattori eccetto e .
è un numero primo
Passaggio 2.5
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.6
Il fattore di è stesso.
si verifica volta.
Passaggio 2.7
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.8
Il minimo comune multiplo di alcuni numeri è il numero più piccolo di cui i numeri sono fattori.
Passaggio 3
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica ogni termine in per .
Passaggio 3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 3.2.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 3.2.2.1
e .
Passaggio 3.2.2.2
Moltiplica per .
Passaggio 3.2.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.3.1
Elimina il fattore comune.
Passaggio 3.2.3.2
Riscrivi l'espressione.
Passaggio 3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 3.3.1.2
Elimina il fattore comune.
Passaggio 3.3.1.3
Riscrivi l'espressione.
Passaggio 3.3.2
Applica la proprietà distributiva.
Passaggio 3.3.3
Moltiplica per .
Passaggio 4
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 4.1
Riscrivi l'equazione come .
Passaggio 4.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 4.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 4.2.2
Somma e .
Passaggio 4.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 4.3.1
Dividi per ciascun termine in .
Passaggio 4.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.3.2.1.1
Elimina il fattore comune.
Passaggio 4.3.2.1.2
Dividi per .
Passaggio 4.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.3.3.1
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.3.3.1.1
Scomponi da .
Passaggio 4.3.3.1.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 4.3.3.1.2.1
Scomponi da .
Passaggio 4.3.3.1.2.2
Elimina il fattore comune.
Passaggio 4.3.3.1.2.3
Riscrivi l'espressione.
Passaggio 4.3.3.2
Sposta il negativo davanti alla frazione.
Passaggio 4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 4.5
Semplifica .
Tocca per altri passaggi...
Passaggio 4.5.1
Riscrivi come .
Passaggio 4.5.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 4.6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 4.6.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 4.6.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 4.6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.