Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Passaggio 1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2
Sposta il negativo davanti alla frazione.
Passaggio 1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.4
e .
Passaggio 1.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.6
Semplifica il numeratore.
Passaggio 1.6.1
Moltiplica per .
Passaggio 1.6.2
Sottrai da .
Passaggio 1.7
Sposta il negativo davanti alla frazione.
Passaggio 2
Passaggio 2.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.2
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 2.3
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 2.4
Poiché non presenta fattori eccetto e .
è un numero primo
Passaggio 2.5
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.6
Il fattore di è stesso.
si verifica volta.
Passaggio 2.7
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.8
Il minimo comune multiplo di alcuni numeri è il numero più piccolo di cui i numeri sono fattori.
Passaggio 3
Passaggio 3.1
Moltiplica ogni termine in per .
Passaggio 3.2
Semplifica il lato sinistro.
Passaggio 3.2.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 3.2.2
Moltiplica .
Passaggio 3.2.2.1
e .
Passaggio 3.2.2.2
Moltiplica per .
Passaggio 3.2.3
Elimina il fattore comune di .
Passaggio 3.2.3.1
Elimina il fattore comune.
Passaggio 3.2.3.2
Riscrivi l'espressione.
Passaggio 3.3
Semplifica il lato destro.
Passaggio 3.3.1
Elimina il fattore comune di .
Passaggio 3.3.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 3.3.1.2
Elimina il fattore comune.
Passaggio 3.3.1.3
Riscrivi l'espressione.
Passaggio 3.3.2
Applica la proprietà distributiva.
Passaggio 3.3.3
Moltiplica per .
Passaggio 4
Passaggio 4.1
Riscrivi l'equazione come .
Passaggio 4.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 4.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 4.2.2
Somma e .
Passaggio 4.3
Dividi per ciascun termine in e semplifica.
Passaggio 4.3.1
Dividi per ciascun termine in .
Passaggio 4.3.2
Semplifica il lato sinistro.
Passaggio 4.3.2.1
Elimina il fattore comune di .
Passaggio 4.3.2.1.1
Elimina il fattore comune.
Passaggio 4.3.2.1.2
Dividi per .
Passaggio 4.3.3
Semplifica il lato destro.
Passaggio 4.3.3.1
Elimina il fattore comune di e .
Passaggio 4.3.3.1.1
Scomponi da .
Passaggio 4.3.3.1.2
Elimina i fattori comuni.
Passaggio 4.3.3.1.2.1
Scomponi da .
Passaggio 4.3.3.1.2.2
Elimina il fattore comune.
Passaggio 4.3.3.1.2.3
Riscrivi l'espressione.
Passaggio 4.3.3.2
Sposta il negativo davanti alla frazione.
Passaggio 4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 4.5
Semplifica .
Passaggio 4.5.1
Riscrivi come .
Passaggio 4.5.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 4.6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4.6.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 4.6.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 4.6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.