Trigonometria Esempi

求解x tan(x)^2-2sec(x)+1=0
Passaggio 1
Semplifica il lato sinistro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.1
Sposta .
Passaggio 1.2
Applica l'identità pitagorica.
Passaggio 2
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.1
Scomponi da .
Passaggio 2.2
Scomponi da .
Passaggio 2.3
Scomponi da .
Passaggio 3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Imposta uguale a .
Passaggio 4.2
L'intervallo della secante è e . Poiché non rientra nell'intervallo, non esiste soluzione.
Nessuna soluzione
Nessuna soluzione
Passaggio 5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.1
Imposta uguale a .
Passaggio 5.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 5.2.2
Calcola la secante inversa di entrambi i lati dell'equazione per estrarre dall'interno della secante.
Passaggio 5.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.2.3.1
Il valore esatto di è .
Passaggio 5.2.4
La funzione secante è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 5.2.5
Semplifica .
Tocca per altri passaggi...
Passaggio 5.2.5.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.2.5.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 5.2.5.2.1
e .
Passaggio 5.2.5.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 5.2.5.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.2.5.3.1
Moltiplica per .
Passaggio 5.2.5.3.2
Sottrai da .
Passaggio 5.2.6
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 5.2.6.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.2.6.2
Sostituisci con nella formula per il periodo.
Passaggio 5.2.6.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.2.6.4
Dividi per .
Passaggio 5.2.7
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 6
La soluzione finale è data da tutti i valori che rendono vera.
, per qualsiasi intero