Trigonometria Esempi

求解x 2cot(x)^2+3csc(x)=0
Passaggio 1
Sostituisci con in base all'identità .
Passaggio 2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.1
Applica la proprietà distributiva.
Passaggio 2.2
Moltiplica per .
Passaggio 3
Riordina il polinomio.
Passaggio 4
Sostituisci per .
Passaggio 5
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 5.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 5.1.1
Scomponi da .
Passaggio 5.1.2
Riscrivi come più .
Passaggio 5.1.3
Applica la proprietà distributiva.
Passaggio 5.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 5.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 5.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 5.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 6
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 7
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 7.1
Imposta uguale a .
Passaggio 7.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 7.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 7.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 7.2.2.1
Dividi per ciascun termine in .
Passaggio 7.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 7.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 7.2.2.2.1.1
Elimina il fattore comune.
Passaggio 7.2.2.2.1.2
Dividi per .
Passaggio 8
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 8.1
Imposta uguale a .
Passaggio 8.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 9
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 10
Sostituisci per .
Passaggio 11
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 12
Risolvi per in .
Tocca per altri passaggi...
Passaggio 12.1
L'intervallo della cosecante è e . Poiché non cade nell'intervallo, non esiste soluzione.
Nessuna soluzione
Nessuna soluzione
Passaggio 13
Risolvi per in .
Tocca per altri passaggi...
Passaggio 13.1
Trova la cosecante inversa di entrambi i lati dell'equazione per estrarre dalla cosecante.
Passaggio 13.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 13.2.1
Il valore esatto di è .
Passaggio 13.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Passaggio 13.4
Semplifica l'espressione per trovare la seconda soluzione.
Tocca per altri passaggi...
Passaggio 13.4.1
Sottrai da .
Passaggio 13.4.2
L'angolo risultante di è positivo, minore di e coterminale con .
Passaggio 13.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 13.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 13.5.2
Sostituisci con nella formula per il periodo.
Passaggio 13.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 13.5.4
Dividi per .
Passaggio 13.6
Somma a ogni angolo negativo per ottenere gli angoli positivi.
Tocca per altri passaggi...
Passaggio 13.6.1
Somma a per trovare l'angolo positivo.
Passaggio 13.6.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 13.6.3
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 13.6.3.1
e .
Passaggio 13.6.3.2
Riduci i numeratori su un comune denominatore.
Passaggio 13.6.4
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 13.6.4.1
Moltiplica per .
Passaggio 13.6.4.2
Sottrai da .
Passaggio 13.6.5
Fai un elenco dei nuovi angoli.
Passaggio 13.7
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 14
Elenca tutte le soluzioni.
, per qualsiasi intero