Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Passaggio 1.1
Dividi per ciascun termine in .
Passaggio 1.2
Semplifica il lato sinistro.
Passaggio 1.2.1
Elimina il fattore comune di .
Passaggio 1.2.1.1
Elimina il fattore comune.
Passaggio 1.2.1.2
Riscrivi l'espressione.
Passaggio 1.2.2
Elimina il fattore comune di .
Passaggio 1.2.2.1
Elimina il fattore comune.
Passaggio 1.2.2.2
Riscrivi l'espressione.
Passaggio 1.3
Semplifica il lato destro.
Passaggio 1.3.1
Frazioni separate.
Passaggio 1.3.2
Riscrivi in termini di seno e coseno.
Passaggio 1.3.3
Riscrivi come un prodotto.
Passaggio 1.3.4
Moltiplica per .
Passaggio 1.3.5
Semplifica il denominatore.
Passaggio 1.3.5.1
Eleva alla potenza di .
Passaggio 1.3.5.2
Eleva alla potenza di .
Passaggio 1.3.5.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.3.5.4
Somma e .
Passaggio 1.3.6
Riduci le frazioni.
Passaggio 1.3.6.1
Combina.
Passaggio 1.3.6.2
Moltiplica per .
Passaggio 1.3.7
Moltiplica per .
Passaggio 1.3.8
Frazioni separate.
Passaggio 1.3.9
Converti da a .
Passaggio 1.3.10
Moltiplica per .
Passaggio 1.3.11
e .
Passaggio 2
Riscrivi l'equazione come .
Passaggio 3
Moltiplica entrambi i lati dell'equazione per .
Passaggio 4
Passaggio 4.1
Semplifica il lato sinistro.
Passaggio 4.1.1
Elimina il fattore comune di .
Passaggio 4.1.1.1
Elimina il fattore comune.
Passaggio 4.1.1.2
Riscrivi l'espressione.
Passaggio 4.2
Semplifica il lato destro.
Passaggio 4.2.1
Moltiplica per .
Passaggio 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 6
Passaggio 6.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 6.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 7
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 8
Passaggio 8.1
Calcola la secante inversa di entrambi i lati dell'equazione per estrarre dall'interno della secante.
Passaggio 8.2
Semplifica il lato destro.
Passaggio 8.2.1
Il valore esatto di è .
Passaggio 8.3
La funzione secante è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 8.4
Semplifica .
Passaggio 8.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 8.4.2
Riduci le frazioni.
Passaggio 8.4.2.1
e .
Passaggio 8.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 8.4.3
Semplifica il numeratore.
Passaggio 8.4.3.1
Moltiplica per .
Passaggio 8.4.3.2
Sottrai da .
Passaggio 8.5
Trova il periodo di .
Passaggio 8.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 8.5.2
Sostituisci con nella formula per il periodo.
Passaggio 8.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 8.5.4
Dividi per .
Passaggio 8.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 9
Passaggio 9.1
Calcola la secante inversa di entrambi i lati dell'equazione per estrarre dall'interno della secante.
Passaggio 9.2
Semplifica il lato destro.
Passaggio 9.2.1
Il valore esatto di è .
Passaggio 9.3
La funzione secante è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 9.4
Semplifica .
Passaggio 9.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 9.4.2
Riduci le frazioni.
Passaggio 9.4.2.1
e .
Passaggio 9.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 9.4.3
Semplifica il numeratore.
Passaggio 9.4.3.1
Moltiplica per .
Passaggio 9.4.3.2
Sottrai da .
Passaggio 9.5
Trova il periodo di .
Passaggio 9.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 9.5.2
Sostituisci con nella formula per il periodo.
Passaggio 9.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 9.5.4
Dividi per .
Passaggio 9.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 10
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 11
Consolida le risposte.
, per qualsiasi intero