Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 2
Passaggio 2.1
Sottrai da .
Passaggio 2.2
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Passaggio 2.3.2.1
Elimina il fattore comune di .
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Passaggio 2.3.3.1
Sposta il negativo davanti alla frazione.
Passaggio 3
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4
Passaggio 4.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al quadrato entrambi i lati dell'equazione.
Passaggio 4.2
Semplifica ogni lato dell'equazione.
Passaggio 4.2.1
Usa per riscrivere come .
Passaggio 4.2.2
Semplifica il lato sinistro.
Passaggio 4.2.2.1
Semplifica .
Passaggio 4.2.2.1.1
Moltiplica gli esponenti in .
Passaggio 4.2.2.1.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 4.2.2.1.1.2
Elimina il fattore comune di .
Passaggio 4.2.2.1.1.2.1
Elimina il fattore comune.
Passaggio 4.2.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 4.2.2.1.2
Sottrai da .
Passaggio 4.2.2.1.3
Semplifica.
Passaggio 4.2.3
Semplifica il lato destro.
Passaggio 4.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.3
Risolvi per .
Passaggio 4.3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.3.2
Dividi per ciascun termine in e semplifica.
Passaggio 4.3.2.1
Dividi per ciascun termine in .
Passaggio 4.3.2.2
Semplifica il lato sinistro.
Passaggio 4.3.2.2.1
Elimina il fattore comune di .
Passaggio 4.3.2.2.1.1
Elimina il fattore comune.
Passaggio 4.3.2.2.1.2
Dividi per .
Passaggio 4.3.2.3
Semplifica il lato destro.
Passaggio 4.3.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 5
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 6