Trigonometria Esempi

求解x sin(2x)=cos(x)
sin(2x)=cos(x)
Passaggio 1
Sottrai cos(x) da entrambi i lati dell'equazione.
sin(2x)-cos(x)=0
Passaggio 2
Applica l'identità a doppio angolo del seno.
2sin(x)cos(x)-cos(x)=0
Passaggio 3
Scomponi cos(x) da 2sin(x)cos(x)-cos(x).
Tocca per altri passaggi...
Passaggio 3.1
Scomponi cos(x) da 2sin(x)cos(x).
cos(x)(2sin(x))-cos(x)=0
Passaggio 3.2
Scomponi cos(x) da -cos(x).
cos(x)(2sin(x))+cos(x)-1=0
Passaggio 3.3
Scomponi cos(x) da cos(x)(2sin(x))+cos(x)-1.
cos(x)(2sin(x)-1)=0
cos(x)(2sin(x)-1)=0
Passaggio 4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a 0, l'intera espressione sarà uguale a 0.
cos(x)=0
2sin(x)-1=0
Passaggio 5
Imposta cos(x) uguale a 0 e risolvi per x.
Tocca per altri passaggi...
Passaggio 5.1
Imposta cos(x) uguale a 0.
cos(x)=0
Passaggio 5.2
Risolvi cos(x)=0 per x.
Tocca per altri passaggi...
Passaggio 5.2.1
Trova il valore dell'incognita x corrispondente all'inverso del coseno presente nell'equazione assegnata.
x=arccos(0)
Passaggio 5.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.2.2.1
Il valore esatto di arccos(0) è π2.
x=π2
x=π2
Passaggio 5.2.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da 2π per trovare la soluzione nel quarto quadrante.
x=2π-π2
Passaggio 5.2.4
Semplifica 2π-π2.
Tocca per altri passaggi...
Passaggio 5.2.4.1
Per scrivere 2π come una frazione con un comune denominatore, moltiplicala per 22.
x=2π22-π2
Passaggio 5.2.4.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 5.2.4.2.1
2π e 22.
x=2π22-π2
Passaggio 5.2.4.2.2
Riduci i numeratori su un comune denominatore.
x=2π2-π2
x=2π2-π2
Passaggio 5.2.4.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.2.4.3.1
Moltiplica 2 per 2.
x=4π-π2
Passaggio 5.2.4.3.2
Sottrai π da 4π.
x=3π2
x=3π2
x=3π2
Passaggio 5.2.5
Trova il periodo di cos(x).
Tocca per altri passaggi...
Passaggio 5.2.5.1
Si può calcolare il periodo della funzione usando 2π|b|.
2π|b|
Passaggio 5.2.5.2
Sostituisci b con 1 nella formula per il periodo.
2π|1|
Passaggio 5.2.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra 0 e 1 è 1.
2π1
Passaggio 5.2.5.4
Dividi 2π per 1.
2π
2π
Passaggio 5.2.6
Il periodo della funzione cos(x) è 2π, quindi i valori si ripetono ogni 2π radianti in entrambe le direzioni.
x=π2+2πn,3π2+2πn, per qualsiasi intero n
x=π2+2πn,3π2+2πn, per qualsiasi intero n
x=π2+2πn,3π2+2πn, per qualsiasi intero n
Passaggio 6
Imposta 2sin(x)-1 uguale a 0 e risolvi per x.
Tocca per altri passaggi...
Passaggio 6.1
Imposta 2sin(x)-1 uguale a 0.
2sin(x)-1=0
Passaggio 6.2
Risolvi 2sin(x)-1=0 per x.
Tocca per altri passaggi...
Passaggio 6.2.1
Somma 1 a entrambi i lati dell'equazione.
2sin(x)=1
Passaggio 6.2.2
Dividi per 2 ciascun termine in 2sin(x)=1 e semplifica.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Dividi per 2 ciascun termine in 2sin(x)=1.
2sin(x)2=12
Passaggio 6.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.2.2.2.1
Elimina il fattore comune di 2.
Tocca per altri passaggi...
Passaggio 6.2.2.2.1.1
Elimina il fattore comune.
2sin(x)2=12
Passaggio 6.2.2.2.1.2
Dividi sin(x) per 1.
sin(x)=12
sin(x)=12
sin(x)=12
sin(x)=12
Passaggio 6.2.3
Trova il valore dell'incognita x corrispondente all'inverso del seno presente nell'equazione assegnata.
x=arcsin(12)
Passaggio 6.2.4
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.2.4.1
Il valore esatto di arcsin(12) è π6.
x=π6
x=π6
Passaggio 6.2.5
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da π per trovare la soluzione nel secondo quadrante.
x=π-π6
Passaggio 6.2.6
Semplifica π-π6.
Tocca per altri passaggi...
Passaggio 6.2.6.1
Per scrivere π come una frazione con un comune denominatore, moltiplicala per 66.
x=π66-π6
Passaggio 6.2.6.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 6.2.6.2.1
π e 66.
x=π66-π6
Passaggio 6.2.6.2.2
Riduci i numeratori su un comune denominatore.
x=π6-π6
x=π6-π6
Passaggio 6.2.6.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 6.2.6.3.1
Sposta 6 alla sinistra di π.
x=6π-π6
Passaggio 6.2.6.3.2
Sottrai π da 6π.
x=5π6
x=5π6
x=5π6
Passaggio 6.2.7
Trova il periodo di sin(x).
Tocca per altri passaggi...
Passaggio 6.2.7.1
Si può calcolare il periodo della funzione usando 2π|b|.
2π|b|
Passaggio 6.2.7.2
Sostituisci b con 1 nella formula per il periodo.
2π|1|
Passaggio 6.2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra 0 e 1 è 1.
2π1
Passaggio 6.2.7.4
Dividi 2π per 1.
2π
2π
Passaggio 6.2.8
Il periodo della funzione sin(x) è 2π, quindi i valori si ripetono ogni 2π radianti in entrambe le direzioni.
x=π6+2πn,5π6+2πn, per qualsiasi intero n
x=π6+2πn,5π6+2πn, per qualsiasi intero n
x=π6+2πn,5π6+2πn, per qualsiasi intero n
Passaggio 7
La soluzione finale è data da tutti i valori che rendono cos(x)(2sin(x)-1)=0 vera.
x=π2+2πn,3π2+2πn,π6+2πn,5π6+2πn, per qualsiasi intero n
Passaggio 8
Combina π2+2πn e 3π2+2πn in π2+πn.
x=π2+πn,π6+2πn,5π6+2πn, per qualsiasi intero n
 [x2  12  π  xdx ]