Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Dividi per ciascun termine dell'equazione.
Passaggio 2
Frazioni separate.
Passaggio 3
Converti da a .
Passaggio 4
Dividi per .
Passaggio 5
Passaggio 5.1
Elimina il fattore comune.
Passaggio 5.2
Riscrivi l'espressione.
Passaggio 6
Passaggio 6.1
Dividi per ciascun termine in .
Passaggio 6.2
Semplifica il lato sinistro.
Passaggio 6.2.1
Elimina il fattore comune di .
Passaggio 6.2.1.1
Elimina il fattore comune.
Passaggio 6.2.1.2
Dividi per .
Passaggio 6.3
Semplifica il lato destro.
Passaggio 6.3.1
Moltiplica per .
Passaggio 6.3.2
Combina e semplifica il denominatore.
Passaggio 6.3.2.1
Moltiplica per .
Passaggio 6.3.2.2
Eleva alla potenza di .
Passaggio 6.3.2.3
Eleva alla potenza di .
Passaggio 6.3.2.4
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 6.3.2.5
Somma e .
Passaggio 6.3.2.6
Riscrivi come .
Passaggio 6.3.2.6.1
Usa per riscrivere come .
Passaggio 6.3.2.6.2
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 6.3.2.6.3
e .
Passaggio 6.3.2.6.4
Elimina il fattore comune di .
Passaggio 6.3.2.6.4.1
Elimina il fattore comune.
Passaggio 6.3.2.6.4.2
Riscrivi l'espressione.
Passaggio 6.3.2.6.5
Calcola l'esponente.
Passaggio 7
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 8
Passaggio 8.1
Il valore esatto di è .
Passaggio 9
La funzione tangente è positiva nel primo e nel terzo quadrante. Per trovare la seconda soluzione, aggiungi l'angolo di riferimento da per determinare la soluzione nel quarto quadrante.
Passaggio 10
Passaggio 10.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 10.2
Riduci le frazioni.
Passaggio 10.2.1
e .
Passaggio 10.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 10.3
Semplifica il numeratore.
Passaggio 10.3.1
Sposta alla sinistra di .
Passaggio 10.3.2
Somma e .
Passaggio 11
Passaggio 11.1
Si può calcolare il periodo della funzione usando .
Passaggio 11.2
Sostituisci con nella formula per il periodo.
Passaggio 11.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 11.4
Dividi per .
Passaggio 12
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 13
Consolida le risposte.
, per qualsiasi intero