Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Sostituisci con in base all'identità .
Passaggio 2
Riordina il polinomio.
Passaggio 3
Sostituisci per .
Passaggio 4
Passaggio 4.1
Riscrivi.
Passaggio 4.2
Semplifica aggiungendo gli zeri.
Passaggio 4.3
Applica la proprietà distributiva.
Passaggio 4.4
Moltiplica per .
Passaggio 5
Sottrai da entrambi i lati dell'equazione.
Passaggio 6
Sottrai da entrambi i lati dell'equazione.
Passaggio 7
Sottrai da .
Passaggio 8
Passaggio 8.1
Scomponi da .
Passaggio 8.1.1
Scomponi da .
Passaggio 8.1.2
Scomponi da .
Passaggio 8.1.3
Riscrivi come .
Passaggio 8.1.4
Scomponi da .
Passaggio 8.1.5
Scomponi da .
Passaggio 8.2
Scomponi.
Passaggio 8.2.1
Scomponi usando il metodo AC.
Passaggio 8.2.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 8.2.1.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 8.2.2
Rimuovi le parentesi non necessarie.
Passaggio 9
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 10
Passaggio 10.1
Imposta uguale a .
Passaggio 10.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 11
Passaggio 11.1
Imposta uguale a .
Passaggio 11.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 12
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 13
Sostituisci per .
Passaggio 14
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 15
Passaggio 15.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 15.2
Semplifica il lato destro.
Passaggio 15.2.1
Il valore esatto di è .
Passaggio 15.3
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 15.4
Sottrai da .
Passaggio 15.5
Trova il periodo di .
Passaggio 15.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 15.5.2
Sostituisci con nella formula per il periodo.
Passaggio 15.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 15.5.4
Dividi per .
Passaggio 15.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 16
Passaggio 16.1
L'intervallo del coseno è . Dato che non rientra nell'intervallo, non c'è soluzione.
Nessuna soluzione
Nessuna soluzione
Passaggio 17
Elenca tutte le soluzioni.
, per qualsiasi intero