Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Sostituisci con in base all'identità .
Passaggio 3
Passaggio 3.1
Applica la proprietà distributiva.
Passaggio 3.2
Moltiplica per .
Passaggio 3.3
Moltiplica per .
Passaggio 4
Sottrai da .
Passaggio 5
Riordina il polinomio.
Passaggio 6
Sottrai da entrambi i lati dell'equazione.
Passaggio 7
Passaggio 7.1
Dividi per ciascun termine in .
Passaggio 7.2
Semplifica il lato sinistro.
Passaggio 7.2.1
Elimina il fattore comune di .
Passaggio 7.2.1.1
Elimina il fattore comune.
Passaggio 7.2.1.2
Dividi per .
Passaggio 7.3
Semplifica il lato destro.
Passaggio 7.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 8
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 9
Passaggio 9.1
Riscrivi come .
Passaggio 9.2
Semplifica il denominatore.
Passaggio 9.2.1
Riscrivi come .
Passaggio 9.2.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 10
Passaggio 10.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 10.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 10.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 11
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 12
Passaggio 12.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 12.2
Semplifica il lato destro.
Passaggio 12.2.1
Il valore esatto di è .
Passaggio 12.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 12.4
Semplifica .
Passaggio 12.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 12.4.2
Riduci le frazioni.
Passaggio 12.4.2.1
e .
Passaggio 12.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 12.4.3
Semplifica il numeratore.
Passaggio 12.4.3.1
Moltiplica per .
Passaggio 12.4.3.2
Sottrai da .
Passaggio 12.5
Trova il periodo di .
Passaggio 12.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 12.5.2
Sostituisci con nella formula per il periodo.
Passaggio 12.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 12.5.4
Dividi per .
Passaggio 12.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 13
Passaggio 13.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 13.2
Semplifica il lato destro.
Passaggio 13.2.1
Il valore esatto di è .
Passaggio 13.3
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 13.4
Semplifica .
Passaggio 13.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 13.4.2
Riduci le frazioni.
Passaggio 13.4.2.1
e .
Passaggio 13.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 13.4.3
Semplifica il numeratore.
Passaggio 13.4.3.1
Moltiplica per .
Passaggio 13.4.3.2
Sottrai da .
Passaggio 13.5
Trova il periodo di .
Passaggio 13.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 13.5.2
Sostituisci con nella formula per il periodo.
Passaggio 13.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 13.5.4
Dividi per .
Passaggio 13.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 14
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 15
Passaggio 15.1
Combina e in .
, per qualsiasi intero
Passaggio 15.2
Combina e in .
, per qualsiasi intero
, per qualsiasi intero