Trigonometria Esempi

求x的角度 2(1-cos(x)^2)=3/2
Passaggio 1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.1
Dividi per ciascun termine in .
Passaggio 1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.2.1.1
Elimina il fattore comune.
Passaggio 1.2.1.2
Dividi per .
Passaggio 1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.3.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.3.2.1
Moltiplica per .
Passaggio 1.3.2.2
Moltiplica per .
Passaggio 2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.3
e .
Passaggio 2.4
Riduci i numeratori su un comune denominatore.
Passaggio 2.5
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.5.1
Moltiplica per .
Passaggio 2.5.2
Sottrai da .
Passaggio 2.6
Sposta il negativo davanti alla frazione.
Passaggio 3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 3.1
Dividi per ciascun termine in .
Passaggio 3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 3.2.2
Dividi per .
Passaggio 3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 3.3.2
Dividi per .
Passaggio 4
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 5
Semplifica .
Tocca per altri passaggi...
Passaggio 5.1
Riscrivi come .
Passaggio 5.2
Qualsiasi radice di è .
Passaggio 5.3
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 5.3.1
Riscrivi come .
Passaggio 5.3.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 6.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 6.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 7
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 8
Risolvi per in .
Tocca per altri passaggi...
Passaggio 8.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 8.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 8.2.1
Il valore esatto di è .
Passaggio 8.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 8.4
Sottrai da .
Passaggio 8.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 8.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 8.5.2
Sostituisci con nella formula per il periodo.
Passaggio 8.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 8.5.4
Dividi per .
Passaggio 8.6
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 9
Risolvi per in .
Tocca per altri passaggi...
Passaggio 9.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 9.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 9.2.1
Il valore esatto di è .
Passaggio 9.3
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 9.4
Sottrai da .
Passaggio 9.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 9.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 9.5.2
Sostituisci con nella formula per il periodo.
Passaggio 9.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 9.5.4
Dividi per .
Passaggio 9.6
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 10
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 11
Consolida le soluzioni.
Tocca per altri passaggi...
Passaggio 11.1
Combina e in .
, per qualsiasi intero
Passaggio 11.2
Combina e in .
, per qualsiasi intero
, per qualsiasi intero