Trigonometria Esempi

求θ的角度 8tan(theta)^2+10tan(theta)+10=7
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Sottrai da .
Passaggio 3
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 3.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 3.1.1
Scomponi da .
Passaggio 3.1.2
Riscrivi come più .
Passaggio 3.1.3
Applica la proprietà distributiva.
Passaggio 3.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 3.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 3.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 3.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.1
Imposta uguale a .
Passaggio 5.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.2.2.1
Dividi per ciascun termine in .
Passaggio 5.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.2.2.2.1.2
Dividi per .
Passaggio 5.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 5.2.3
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 5.2.4
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.2.4.1
Calcola .
Passaggio 5.2.5
La funzione tangente è negativa nel secondo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 5.2.6
Semplifica l'espressione per trovare la seconda soluzione.
Tocca per altri passaggi...
Passaggio 5.2.6.1
Somma a .
Passaggio 5.2.6.2
L'angolo risultante di è positivo e coterminale con .
Passaggio 5.2.7
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 5.2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 5.2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.2.7.4
Dividi per .
Passaggio 5.2.8
Somma a ogni angolo negativo per ottenere gli angoli positivi.
Tocca per altri passaggi...
Passaggio 5.2.8.1
Somma a per trovare l'angolo positivo.
Passaggio 5.2.8.2
Sottrai da .
Passaggio 5.2.8.3
Fai un elenco dei nuovi angoli.
Passaggio 5.2.9
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 6.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Dividi per ciascun termine in .
Passaggio 6.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.2.2.1.1
Elimina il fattore comune.
Passaggio 6.2.2.2.1.2
Dividi per .
Passaggio 6.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 6.2.3
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 6.2.4
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.2.4.1
Calcola .
Passaggio 6.2.5
La funzione tangente è negativa nel secondo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 6.2.6
Semplifica l'espressione per trovare la seconda soluzione.
Tocca per altri passaggi...
Passaggio 6.2.6.1
Somma a .
Passaggio 6.2.6.2
L'angolo risultante di è positivo e coterminale con .
Passaggio 6.2.7
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 6.2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 6.2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 6.2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 6.2.7.4
Dividi per .
Passaggio 6.2.8
Somma a ogni angolo negativo per ottenere gli angoli positivi.
Tocca per altri passaggi...
Passaggio 6.2.8.1
Somma a per trovare l'angolo positivo.
Passaggio 6.2.8.2
Sottrai da .
Passaggio 6.2.8.3
Fai un elenco dei nuovi angoli.
Passaggio 6.2.9
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 7
La soluzione finale è data da tutti i valori che rendono vera.
, per qualsiasi intero