Trigonometria Esempi

求x的角度 tan(x)sin(x)+4sin(x)=0
Passaggio 1
Semplifica il lato sinistro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.1
Riscrivi in termini di seno e coseno.
Passaggio 1.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.1.2.1
e .
Passaggio 1.1.2.2
Eleva alla potenza di .
Passaggio 1.1.2.3
Eleva alla potenza di .
Passaggio 1.1.2.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.1.2.5
Somma e .
Passaggio 1.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.2.1
Scomponi da .
Passaggio 1.2.2
Frazioni separate.
Passaggio 1.2.3
Converti da a .
Passaggio 1.2.4
Dividi per .
Passaggio 2
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.1
Scomponi da .
Passaggio 2.2
Scomponi da .
Passaggio 3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Imposta uguale a .
Passaggio 4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.2.1
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 4.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Il valore esatto di è .
Passaggio 4.2.3
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 4.2.4
Sottrai da .
Passaggio 4.2.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 4.2.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 4.2.5.2
Sostituisci con nella formula per il periodo.
Passaggio 4.2.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 4.2.5.4
Dividi per .
Passaggio 4.2.6
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.1
Imposta uguale a .
Passaggio 5.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.2.2
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 5.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.2.3.1
Calcola .
Passaggio 5.2.4
La funzione tangente è negativa nel secondo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 5.2.5
Semplifica l'espressione per trovare la seconda soluzione.
Tocca per altri passaggi...
Passaggio 5.2.5.1
Somma a .
Passaggio 5.2.5.2
L'angolo risultante di è positivo e coterminale con .
Passaggio 5.2.6
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 5.2.6.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.2.6.2
Sostituisci con nella formula per il periodo.
Passaggio 5.2.6.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.2.6.4
Dividi per .
Passaggio 5.2.7
Somma a ogni angolo negativo per ottenere gli angoli positivi.
Tocca per altri passaggi...
Passaggio 5.2.7.1
Somma a per trovare l'angolo positivo.
Passaggio 5.2.7.2
Sottrai da .
Passaggio 5.2.7.3
Fai un elenco dei nuovi angoli.
Passaggio 5.2.8
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 6
La soluzione finale è data da tutti i valori che rendono vera.
, per qualsiasi intero
Passaggio 7
Consolida le risposte.
Tocca per altri passaggi...
Passaggio 7.1
Combina e in .
, per qualsiasi intero
Passaggio 7.2
Combina e in .
, per qualsiasi intero
, per qualsiasi intero