Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 2
Passaggio 2.1
Riscrivi come .
Passaggio 2.2
Qualsiasi radice di è .
Passaggio 2.3
Moltiplica per .
Passaggio 2.4
Combina e semplifica il denominatore.
Passaggio 2.4.1
Moltiplica per .
Passaggio 2.4.2
Eleva alla potenza di .
Passaggio 2.4.3
Eleva alla potenza di .
Passaggio 2.4.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.4.5
Somma e .
Passaggio 2.4.6
Riscrivi come .
Passaggio 2.4.6.1
Usa per riscrivere come .
Passaggio 2.4.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.4.6.3
e .
Passaggio 2.4.6.4
Elimina il fattore comune di .
Passaggio 2.4.6.4.1
Elimina il fattore comune.
Passaggio 2.4.6.4.2
Riscrivi l'espressione.
Passaggio 2.4.6.5
Calcola l'esponente.
Passaggio 3
Passaggio 3.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 5
Passaggio 5.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 5.2
Semplifica il lato destro.
Passaggio 5.2.1
Il valore esatto di è .
Passaggio 5.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 5.4
Sottrai da .
Passaggio 5.5
Trova il periodo di .
Passaggio 5.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.5.2
Sostituisci con nella formula per il periodo.
Passaggio 5.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.5.4
Dividi per .
Passaggio 5.6
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 6
Passaggio 6.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 6.2
Semplifica il lato destro.
Passaggio 6.2.1
Il valore esatto di è .
Passaggio 6.3
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 6.4
Sottrai da .
Passaggio 6.5
Trova il periodo di .
Passaggio 6.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 6.5.2
Sostituisci con nella formula per il periodo.
Passaggio 6.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 6.5.4
Dividi per .
Passaggio 6.6
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 7
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 8
Consolida le risposte.
, per qualsiasi intero