Trigonometria Esempi

求θ的角度 cot(theta)^2-9=0
Passaggio 1
Somma a entrambi i lati dell'equazione.
Passaggio 2
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3
Semplifica .
Tocca per altri passaggi...
Passaggio 3.1
Riscrivi come .
Passaggio 3.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 4.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 4.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 5
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 6
Risolvi per in .
Tocca per altri passaggi...
Passaggio 6.1
Trova il valore dell'incognita corrispondente all'inverso della cotangente presente nell'equazione assegnata.
Passaggio 6.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.2.1
Calcola .
Passaggio 6.3
La funzione della cotangente è positiva nel primo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 6.4
Somma e .
Passaggio 6.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 6.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 6.5.2
Sostituisci con nella formula per il periodo.
Passaggio 6.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 6.5.4
Dividi per .
Passaggio 6.6
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 7
Risolvi per in .
Tocca per altri passaggi...
Passaggio 7.1
Trova il valore dell'incognita corrispondente all'inverso della cotangente presente nell'equazione assegnata.
Passaggio 7.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 7.2.1
Calcola .
Passaggio 7.3
La funzione cotangente è negativa nel secondo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 7.4
Semplifica l'espressione per trovare la seconda soluzione.
Tocca per altri passaggi...
Passaggio 7.4.1
Somma a .
Passaggio 7.4.2
L'angolo risultante di è positivo e coterminale con .
Passaggio 7.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 7.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 7.5.2
Sostituisci con nella formula per il periodo.
Passaggio 7.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 7.5.4
Dividi per .
Passaggio 7.6
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 8
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 9
Consolida le soluzioni.
Tocca per altri passaggi...
Passaggio 9.1
Combina e in .
, per qualsiasi intero
Passaggio 9.2
Combina e in .
, per qualsiasi intero
, per qualsiasi intero