Trigonometria Esempi

求x的弧度 sin(x)^2=3cos(x)^2
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Sostituisci con in base all'identità .
Passaggio 3
Sottrai da .
Passaggio 4
Riordina il polinomio.
Passaggio 5
Sottrai da entrambi i lati dell'equazione.
Passaggio 6
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 6.1
Dividi per ciascun termine in .
Passaggio 6.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.1.1
Elimina il fattore comune.
Passaggio 6.2.1.2
Dividi per .
Passaggio 6.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 7
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 8
Semplifica .
Tocca per altri passaggi...
Passaggio 8.1
Riscrivi come .
Passaggio 8.2
Qualsiasi radice di è .
Passaggio 8.3
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 8.3.1
Riscrivi come .
Passaggio 8.3.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 9
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 9.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 9.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 9.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 10
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 11
Risolvi per in .
Tocca per altri passaggi...
Passaggio 11.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 11.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 11.2.1
Il valore esatto di è .
Passaggio 11.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 11.4
Semplifica .
Tocca per altri passaggi...
Passaggio 11.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 11.4.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 11.4.2.1
e .
Passaggio 11.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 11.4.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 11.4.3.1
Moltiplica per .
Passaggio 11.4.3.2
Sottrai da .
Passaggio 11.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 11.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 11.5.2
Sostituisci con nella formula per il periodo.
Passaggio 11.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 11.5.4
Dividi per .
Passaggio 11.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 12
Risolvi per in .
Tocca per altri passaggi...
Passaggio 12.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 12.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 12.2.1
Il valore esatto di è .
Passaggio 12.3
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 12.4
Semplifica .
Tocca per altri passaggi...
Passaggio 12.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 12.4.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 12.4.2.1
e .
Passaggio 12.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 12.4.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 12.4.3.1
Moltiplica per .
Passaggio 12.4.3.2
Sottrai da .
Passaggio 12.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 12.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 12.5.2
Sostituisci con nella formula per il periodo.
Passaggio 12.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 12.5.4
Dividi per .
Passaggio 12.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 13
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 14
Consolida le soluzioni.
Tocca per altri passaggi...
Passaggio 14.1
Combina e in .
, per qualsiasi intero
Passaggio 14.2
Combina e in .
, per qualsiasi intero
, per qualsiasi intero