Inserisci un problema...
Trigonometria Esempi
,
Passaggio 1
The cotangent function is positive in the first and third quadrants. The secant function is negative in the second and third quadrants. The set of solutions for are limited to the third quadrant since that is the only quadrant found in both sets.
La soluzione si trova nel terzo quadrante.
Passaggio 2
Usa la definizione di secante per trovare i lati noti del triangolo rettangolo nella circonferenza unitaria. Il quadrante determina il segno di ognuno dei valori.
Passaggio 3
Trova il lato opposto del triangolo sulla circonferenza unitaria. Dato che il lato adiacente e l'ipotenusa sono noti, usa il teorema di Pitagora per trovare il lato rimanente.
Passaggio 4
Sostituisci i valori noti all'interno dell'equazione.
Passaggio 5
Passaggio 5.1
Nega .
Opposto
Passaggio 5.2
Riscrivi come .
Passaggio 5.2.1
Usa per riscrivere come .
Opposto
Passaggio 5.2.2
Applica la regola della potenza e moltiplica gli esponenti, .
Opposto
Passaggio 5.2.3
e .
Opposto
Passaggio 5.2.4
Elimina il fattore comune di .
Passaggio 5.2.4.1
Elimina il fattore comune.
Opposto
Passaggio 5.2.4.2
Riscrivi l'espressione.
Opposto
Opposto
Passaggio 5.2.5
Calcola l'esponente.
Opposto
Opposto
Passaggio 5.3
Moltiplica per sommando gli esponenti.
Passaggio 5.3.1
Moltiplica per .
Passaggio 5.3.1.1
Eleva alla potenza di .
Opposto
Passaggio 5.3.1.2
Usa la regola della potenza per combinare gli esponenti.
Opposto
Opposto
Passaggio 5.3.2
Somma e .
Opposto
Opposto
Passaggio 5.4
Eleva alla potenza di .
Opposto
Passaggio 5.5
Sottrai da .
Opposto
Passaggio 5.6
Riscrivi come .
Opposto
Passaggio 5.7
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Opposto
Passaggio 5.8
Moltiplica per .
Opposto
Opposto
Passaggio 6
Passaggio 6.1
Usa la definizione di seno per trovare il valore di .
Passaggio 6.2
Sostituisci i valori noti.
Passaggio 6.3
Semplifica il valore di .
Passaggio 6.3.1
Sposta il negativo davanti alla frazione.
Passaggio 6.3.2
Moltiplica per .
Passaggio 6.3.3
Combina e semplifica il denominatore.
Passaggio 6.3.3.1
Moltiplica per .
Passaggio 6.3.3.2
Eleva alla potenza di .
Passaggio 6.3.3.3
Eleva alla potenza di .
Passaggio 6.3.3.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 6.3.3.5
Somma e .
Passaggio 6.3.3.6
Riscrivi come .
Passaggio 6.3.3.6.1
Usa per riscrivere come .
Passaggio 6.3.3.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 6.3.3.6.3
e .
Passaggio 6.3.3.6.4
Elimina il fattore comune di .
Passaggio 6.3.3.6.4.1
Elimina il fattore comune.
Passaggio 6.3.3.6.4.2
Riscrivi l'espressione.
Passaggio 6.3.3.6.5
Calcola l'esponente.
Passaggio 7
Passaggio 7.1
Usa la definizione di coseno per trovare il valore di .
Passaggio 7.2
Sostituisci i valori noti.
Passaggio 7.3
Semplifica il valore di .
Passaggio 7.3.1
Sposta il negativo davanti alla frazione.
Passaggio 7.3.2
Moltiplica per .
Passaggio 7.3.3
Combina e semplifica il denominatore.
Passaggio 7.3.3.1
Moltiplica per .
Passaggio 7.3.3.2
Eleva alla potenza di .
Passaggio 7.3.3.3
Eleva alla potenza di .
Passaggio 7.3.3.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 7.3.3.5
Somma e .
Passaggio 7.3.3.6
Riscrivi come .
Passaggio 7.3.3.6.1
Usa per riscrivere come .
Passaggio 7.3.3.6.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 7.3.3.6.3
e .
Passaggio 7.3.3.6.4
Elimina il fattore comune di .
Passaggio 7.3.3.6.4.1
Elimina il fattore comune.
Passaggio 7.3.3.6.4.2
Riscrivi l'espressione.
Passaggio 7.3.3.6.5
Calcola l'esponente.
Passaggio 8
Passaggio 8.1
Usa la definizione di tangente per trovare il valore di .
Passaggio 8.2
Sostituisci i valori noti.
Passaggio 8.3
Dividi per .
Passaggio 9
Passaggio 9.1
Usa la definizione di cotangente per trovare il valore di .
Passaggio 9.2
Sostituisci i valori noti.
Passaggio 9.3
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 10
Passaggio 10.1
Usa la definizione di cosecante per trovare il valore di .
Passaggio 10.2
Sostituisci i valori noti.
Passaggio 10.3
Sposta il negativo davanti alla frazione.
Passaggio 11
Questa è la soluzione per ogni valore trigonometrico.